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Ovarian cancer is one of the most lethal gynecological malignancies in the world. In the United

States, more than 20,000 cases of ovarian cancer average every year, causing more than 14,000

deaths per year (www.cancer.org). This high percentage of mortality arises predominantly due

to the silent nature of the disease. Ovarian cancer is diagnosed mostly in the late stages thus

earning the disease its name—"Silent killer.” It is therefore of utmost importance to identify

any markers that will allow early detection of ovarian cancer.

The National Cancer Institute associates 15%–20% of all cancer with infectious agents.

Studies in the past have shown the presence of several viral and bacterial markers in ovarian

cancer samples [1, 2]. Understanding the molecular mechanisms of pathogenesis of these

oncogenic pathogens may therefore enable early intervention in treatment and care of ovarian

cancer patients. In this brief review, we endeavor to highlight the role that coinfection of

human herpesvirus 6 (HHV-6) and Chlamydia trachomatis may play in initiation and progres-

sion of ovarian cancer and propose a theory that may justify their presence in ovarian cancer

tissues, thus enabling a directed therapeutic approach.

C. trachomatis is an obligate intracellular, gram-negative bacterium that is transmitted sex-

ually. More than 2.8 million cases are registered in the US alone [3]. However, the actual num-

ber is believed to be much higher, owing to the asymptomatic nature of most C. trachomatis
infections. C. trachomatis has a 48–72 hour life cycle in which it infects the cells, replicates,

and exits by host cell lysis. During its developmental cycle, C. trachomatis cycles between 2

forms—infectious elementary bodies and replicative reticulate bodies (RB). Its presence in the

cell is confined to a vacuole- inclusion. One characteristic of C. trachomatis infection is its abil-

ity to persist in an individual for months up to years. It modulates the host-cell signaling path-

ways, interacts with various organelles, and evades apoptosis to enable the completion of its

developmental cycle [4]. In its pursuit of survival, however, C. trachomatis infection induces

reactive oxygen species (ROS) production via the NADPH and NOD-like receptor family

member X1 (NLRX1) pathways [5]. ROS further leads to oxidative damage of DNA, which is

further repaired by base excision repair (BER) and nucleotide excision repair (NER) pathways.

Recent studies have shown that C. trachomatis impairs BER of damaged DNA by down-regu-

lating polymerase beta [6]. Deficiency in BER pathway enables the cells to acquire tumorigenic

properties [7]. Inefficient BER leads to accumulation of single strand breaks which eventually

lead to double strand breaks in the DNA [8]. Telomeres, the protective molecular caps on

chromosomes, are damaged through induced telomere shortening during C. trachomatis
infection [9]. C. trachomatis also affects the DNA damage response and associated signaling of
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DNA double strand break and telomere repair [10–12]. During C. trachomatis infection, the

host cell encounters DNA damage and suffers impaired repair thereby giving rise to the under-

lying foundation of the prominent cancer hallmark—genomic instability.

HHV-6 is a betaherpesvirus that has a double-stranded DNA genome. It infects nearly

every individual by the age of 2 years. Its unique ability of integration in host telomeres enables

it to maintain a lifelong latency in the infected individual. It mediates this integration through

homologous recombination between its direct repeat (DR) sequences and host telomeric

sequences. This integrated state is termed as chromosomally integrated HHV-6 (ciHHV-6)

[13]. This integrated virus can be transmitted vertically in a mendelian fashion and is then

termed as inherited chromosomally integrated HHV-6 (iciHHV-6). iciHHV-6 occurs in 1% of

the general population in which at least 1 copy of the virus is present in every nucleated cell of

the body [14]. This integrated virus may reactivate further in the lifetime of an individual by

telomere-circle formation mechanism, which causes the excision of virus and its replication

and/or transcription [9]. HHV-6 reactivation can occur due to many reasons, predominantly

by stress and immunosuppression. Reactivation of HHV-6 is associated with a wide range of

disorders [15–17]. Interestingly, DR sequences are able to integrate within the host genome

even in absence of the viral genome. Both in vivo and in vitro studies have shown that viral

DRs are capable of integrating in telomeric, as well as in nontelomeric, regions of host chro-

mosomes [18]. Here, the viral DRs were shown to integrate in the intronic regions of gene

encoding angiogenesis factor AGGF1 and G alpha interacting protein GAIP [18]. Integration

of viral elements in the intronic regions may lead to enhanced gene expression [19]. This trans-

poson-like feature of HHV-6 DR bears the potential of disrupting the regulation of important

genes of human genome. The randomness of DR integration makes it an even more lethal

cause of genomic instability. Recently, early reactivation or transactivation of HHV-6 has been

highlighted by identifying small noncoding viral RNAs (sncRNAs) and their effect on the host

transcriptome [20]. The viral DR encoded DR7 protein is known to bind tumor suppressor

p53 and inhibit its nuclear translocation by sequestering it in cytoplasm. This strategy of

HHV-6 to evade apoptosis may suffice as an initial trigger towards tumorigenesis [21].

C. trachomatis and HHV-6 share an interesting dynamic of coinfection. Coinfection of a C.

trachomatis infected cell with HHV-6 induces C. trachomatis persistence in vitro [22], whereas

C. trachomatis infection of a latent HHV-6 cell line induces reactivation of the virus [9]. Both

these scenarios are detrimental to the genome stability of the host cell. Persistence of C. tracho-
matis would mean DNA damage over an extended period of time, whereas reactivation of

virus may induce production of viral sncRNAs, and random DR integration may severally

hamper genome stability (Fig 1). C. trachomatis, although being associated with ovarian cancer

for nearly a decade now, is mostly studied in its active infectious state. The persistence model

of C. trachomatis is seldom focused upon by researchers. Time and again, epidemiological

studies employing extensive controls have pinpointed past C. trachomatis infections to ovarian

cancer [23]. A recent study using PathoChip array was employed to identify various patho-

genic signatures in ovarian cancer samples. The hybridization signal to pathogen genomic

material was compared with both matched and unmatched control samples. Astonishingly,

high HHV-6 signals were detected in ovarian cancer but not in either of the control samples.

Chlamydia was present with a low prevalence in the same study [1].

Could these pathogens act synergistically and bring about transformation in ovarian cells?

Several studies have reported that pathogens do co-occur and coinfect, and such coinfections

are implicated in different types of cancer. C. trachomatis has been known to be an important

factor in determining the course of Human Papillomavirus (HPV) infection and C. trachoma-
tis/HPV coinfection may cause cervical cancer [24–26]. Plasmodium falciparum and Epstein

Barr virus (EBV) coinfection is implicated in Burkitt Lymphoma in children in equatorial
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Africa [27]. Helicobacter pylori and Hepatitis C virus (HCV) are often implicated as coinfecting

pathogens in a range of abnormalities, including liver cirrhosis, non-Hodgkin’s lymphoma,

and gastric adenocarcinoma [28–30]. However, currently there is no study focusing on HHV-

6 and C. trachomatis coinfections in cancer samples. It is probably time to strip HHV-6 off its

“benign” label and consider its coinfection with C. trachomatis and/or other pathogens for

Fig 1. Consequences of C. trachomatis and HHV-6 coinfection. C. trachomatis infection of an iciHHV-6 cell leads to (a) DNA damage due to impaired BER and

other pathways of DNA damage signaling and (b) HHV-6 reactivation or transactivation and may also lead to transcription of viral sncRNAs. C. trachomatis changes

the epigenetic markup of host cells causing global heterochromatin formation (c). HHV-6 reactivation or transactivation on the other hand may cause (c) integration

of DR sequences at regions in host genome that are “active” during C. trachomatis infection. Integration at important open reading frames of important genes such as

PI3K or hTERT may promote transformation of the cell. HHV-6 DR encodes an oncoprotein DR7, which binds and sequesters p53 in the cytoplasm (d). p53 is also

down-regulated in C. trachomatis -infected cells by various mechanisms. BER, base excision repair; HHV-6, human herpesvirus 6; iciHHV-6; inherited chromosomally

integrated HHV-6; sncRNAs, small noncoding viral RNAs.

https://doi.org/10.1371/journal.ppat.1008055.g001
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further in-depth studies. Identification of prevalence rates of coinfection in ovarian cancer

samples may enable researchers to step-up the in vitro studies and move towards more robust

models to study molecular pathogenesis of coinfection. C. trachomatis down-regulates p53 by

various mechanisms to evade apoptosis [31, 32]. Hence, therapies directed towards stabilizing

p53 during infection could be further explored to reduce C. trachomatis-induced onset of

ovarian cancer. C. trachomatis also changes the miRNA profile of the host cell such as by up-

regulating miR-30c or miR-499a targeting DRP-1 and polymerase beta, respectively [6, 33].

Both miRNAs also target p53. Therefore, research on miRNA inhibitors as a preventive mea-

sure during infection could be considered as another approach. Strong correlation of past

infection with C. trachomatis with nearly absent or low prevalence of pathogen in the cancer

tissue suggests the ability of this pathogen to alter cells in such a way that further escalates and

leads to transformation even after the pathogen is cleared. Down-regulation of p53 and induc-

tion of DNA damage are characteristics of C. trachomatis infection that would fit almost per-

fectly with this hypothesis. However, preexisting genomic malady such as iciHHV-6 could

further enhance the magnitude of C. trachomatis-induced genomic instability and mediated

oncogenesis. C. trachomatis causes global heterochromatin formation of host genome [10].

Therefore, when most of the genome is inaccessible, HHV-6 reactivation during C. trachoma-
tis infection may lead to DR integration at chromosomal regions that are “active” or accessible.

Genes, which are up-regulated during C. trachomatis infection, therefore, form tangible targets

for DR integration. Genetic counseling for iciHHV-6 status owing to the hazardous nature of

DR integration should therefore be considered for predisposed individuals. One additional

marker enabling early detection of ovarian cancer will go a long way in reducing the burden of

the disease and allowing a directed therapeutic approach.

Decades have passed after the Hippocratic dyad explaining that health is achieved by man-

environment harmony, and that dyad has since been upgraded to a triad to include the etiolog-

ical agent. Although many infectious agents causing cancer such as HPV, EBV, or Helicobacter
pylori have been well-studied in terms of their molecular mechanism causing cancer, others

like C. trachomatis and HHV-6, albeit strongly, are merely associated with cancer. It is perhaps

time to design more comprehensive studies and harness “omics” approaches to understand

the possibility of these coinfections in ovarian cancer and subsequently identify the molecular

mechanisms.
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