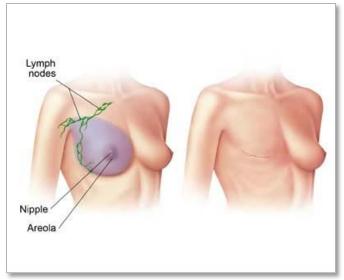
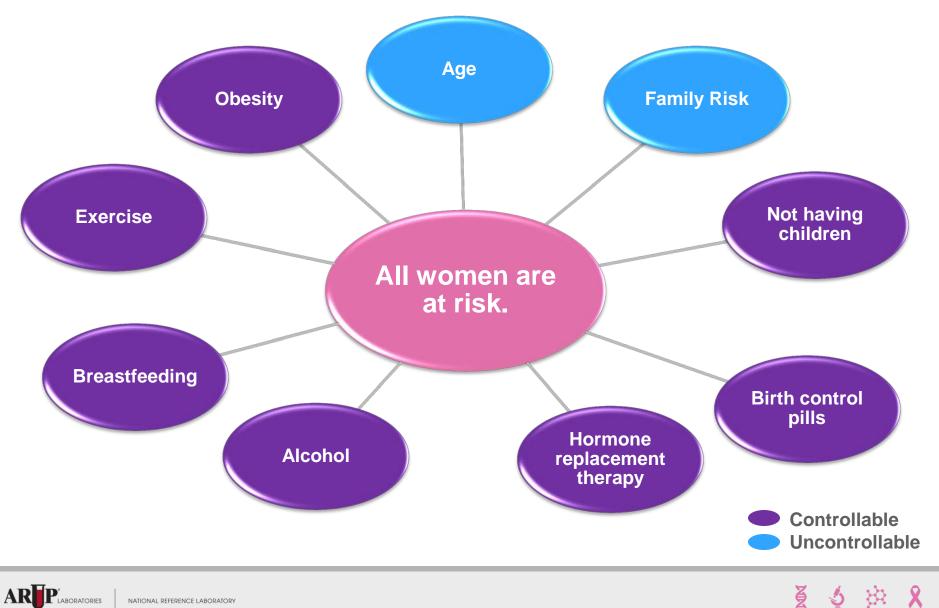
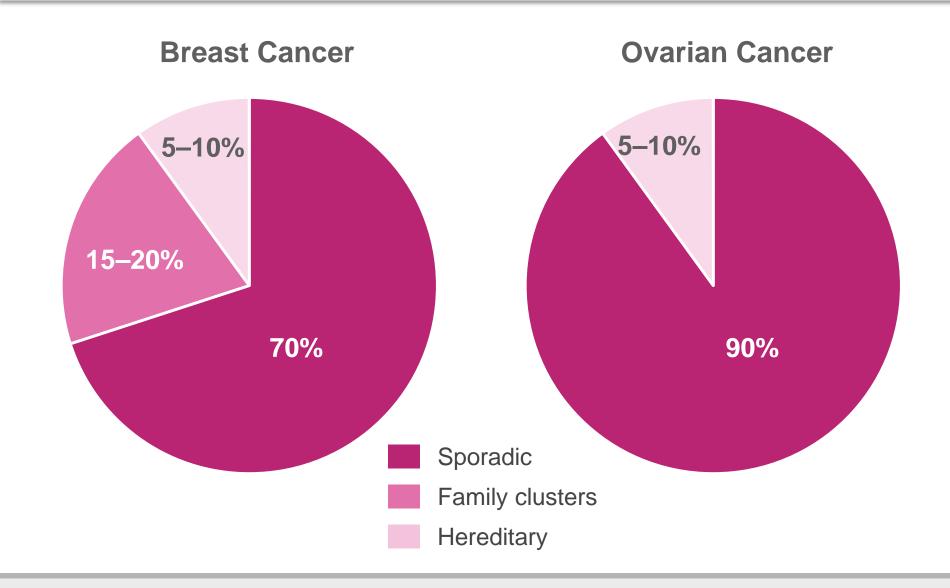
Hereditary Breast and Ovarian Cancer and Genetic Testing


Rong Mao, MD Medical Director, Molecular Genetics and Genomics Associate Professor of Pathology, University of Utah



- Breast cancer is one of the most common forms of cancer among women (40,290 in 2015).
- It is second only to lung cancer as a cause of cancer deaths in American women,
- One-third of women with breast cancer die from breast cancer,
- One out of every eight women will be diagnosed with breast cancer in 2015.

Breast Cancer Risk Factors


Breast Cancer Risk Factors: Age

Risk				
By age 30	1 out of 2,000			
By age 40	1 out of 233			
By age 50	1 out of 53			
By age 60	1 out of 22			
By age 70	1 out of 13			
By age 80	1 out of 9			
Lifetime risk	1 out of 8			

NCI SEER Program. http://seer.cancer.gov/

§ § 🔅 🎗

Family History as a Risk Factor

§ 3 🔅 🎗

ARTPLABORATORIES | NATIONAL REFERENCE LABORATORY

Compare Hereditary vs. Sporadic Cancer

• A younger age at the onset of cancer

Generally < 50 years of age

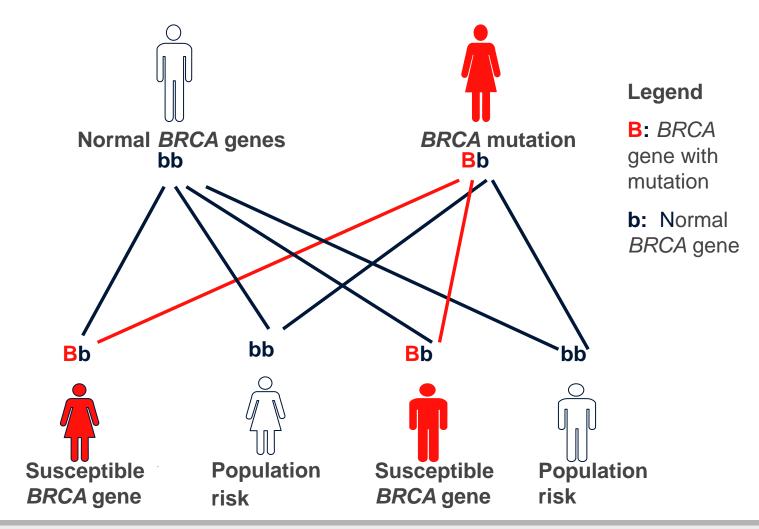
- Multiple primary cancers:
 - Breast
 - Ovarian
 - Other

Causes of Hereditary Susceptibility to Breast Cancer

5–10% of breast cancers can be attributed to inherited factors.

Gene	Contribution to Hereditary Breast Cancer
BRCA1	20–40%
BRCA2	10–30%
TP53	<1%
PTEN	<1%
Undiscovered genes	30–70%

§ 3 🔅 🎗


Breast Cancer Genes Found

- BRCA1 (for BReast CAncer gene 1) was described in 1990 on chromosome 17 and isolated in 1994.
- BRCA2 was isolated on chromosome 13 in late 1994.

Passing on Risk: Autosomal Dominant

Each child has 50% risk of inheriting a familial mutation.

Z 3

ARUP LABORATORIES NATIONAL REFERENCE LABORATORY

Consequences of Having a BRCA Mutation

Estimated cancer risk by age 70				
	BRCA Mutation Carriers	In General Population		
Breast Cancer ♀ <i>BRCA1</i> & <i>BRCA2</i>	50-85%	11%		
Ovarian Cancer BRCA1	40–60%	1–2%		
Ovarian Cancer BRCA2	10-20%	1-2%		
Breast Cancer 3 BRCA2	≤6%	Rare		

Other BRCA+ Related Cancers

Slight risk for other cancers

- Shown to be increased in carriers:
 - Pancreatic
 - Melanoma
 - Stomach
 - Colon
 - Prostate
 - Male breast cancer

Who Should Be Tested?

- Multiple family members with breast cancer
- A family member with primary cancer in both breasts
 - Especially if manifested before age 50
- A family member with ovarian cancer
- A family member with male breast cancer
- A family member with an identified *BRCA1* or *BRCA2* mutation
- Jewish ancestry

BRCA1 and **BRCA2** Mutations

• BRCA1: 1873 mutations

- Point mutations: 1574 (84%)
- Large deletions/duplications: 299 (16%)

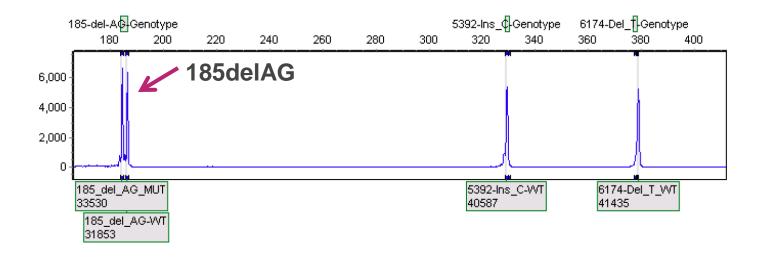
• BRCA2: 1597 mutations

- Point mutations: 1523 (95%)
- Large deletions/duplications: 74 (5%)

Z 3

- Three mutations in *BRCA1* and *2* account for 97% of *BRCA1* and *BRCA2* mutations in Ashkenazi Jewish individuals:
 - BRCA1: 185delAG, 5382insC
 - BRCA2: 6174delT

Hereditary Breast/Ovarian Cancer Testing

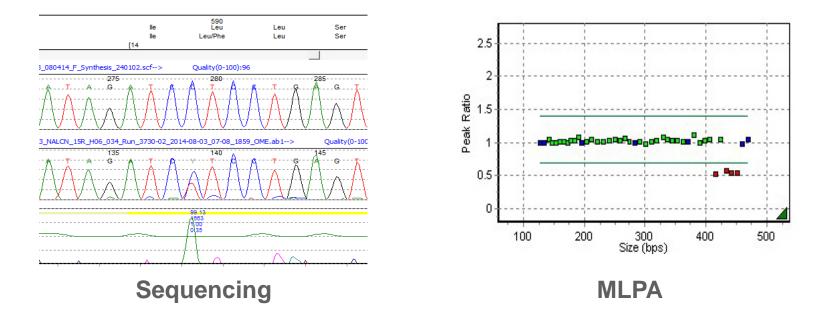

• Ashkenazi Jewish (*BRCA1* and *BRCA2*), 3 Mutations (2011958)

Breast and Ovarian Hereditary Cancer Syndrome (*BRCA1* and *BRCA2*) Sequencing and Deletion/Duplication (2011949)

 Breast and Ovarian Hereditary Cancer Panel, Sequencing and Deletion/Duplication, 20 Genes (2012026)

Test Recommendation for Jewish Ancestry

- Test with Ashkenazi Jewish (*BRCA1* and *BRCA2*), 3 Mutations (2011958): sensitivity 97% (PCR/ capillary electrophorese)
- Negative: Breast and Ovarian Hereditary Cancer Syndrome (*BRCA1* and *BRCA2*) Sequencing and Deletion/Duplication (2011949)

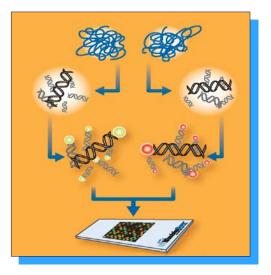


19

Å

Testing for High-Risk Individuals

- Breast and Ovarian Hereditary Cancer Syndrome (*BRCA1* and *BRCA2*) Sequencing and Deletion/Duplication (2011949)
 - Sequencing *BRCA1* and *BRCA2* genes: sensitivity 80–84% and 90–95%
 - Deletion/duplication of *BRCA1* and *BRCA2* genes: sensitivity 16% and 5%



Breast Cancer Multi-Gene Panel

- Breast and Ovarian Hereditary Cancer Panel, Sequencing and Deletion/Duplication, 20 Genes (2012026)
- 20 genes associate with increased risk of breast cancer: *ATM, BARD1, BRCA1, BRCA2, BRIP1, CDH1, CHEK2, EPCAM, MEN1, MLH1, MSH2, MSH6, MUTYH, NBN, PALB2, PTEN, RAD51C, RAD51D, STK11, TP53*

Array CGH

ğ

ARP[®]LABORATORIES

Is This Sequence Variant a Mutation?

M18T in BRCA1: Is this a mutation or benign?

Publication, computational prediction, database

http://www.arup.utah.edu/

THE UNIVERSITY	OF UTAH				Dept. Path.: a to z index map directory calend
Department of I	Pathology				LABORATORIES Institute for LABORATORIES
ne Educational Re	sources	Mutation Databases	Collaborate With ARUP		
RCA Mutation	1 Databa	se			
	esearch on Canco	er (IARC), the University	icer Institute (HCI), and with t v of Utah Department of Path e.		We acknowledge the work of the following contributors:
ne purpose of this databa npact on risk of developir			and BRCA2 gene mutations a rtain other cancers.	and their	CANCER INSTITUTE UNIVERSITY OF UTAH
			curated from critical review o		 Dr. Sean V. Tavtigian, HCI
significance, Watch Dr. Tavtigian introductory talk. [15 min video]				 Dr. Maxime Vallée, IARC 	
wo genes (BRCA1 and BR or both genes. Go to the I	-	· · · · · · · · · · · · · · · · · · ·	latabases mentioned above a outtons below.	are available	
		·			
		BRCA1		BRCA2	

ARUP BRCA1 and **BRCA2** Mutation Database

Search

1168 variants found.

▲ Location	Mutation Type	Nucleotide Change	Protein Change	Classification	Posterior Probability	Reference	Secondary Reference	Comments
Exon 2	Nonsense	c.8T>G	p.L3*	5 - Definitely pathogenic	>0.99	Keshavarzi (2012) Fam Cancer 11; 57		•
Exon 2	Insertion	c.32_33insC		5 - Definitely pathogenic	>0.99	Szabo (1995) Hum Mol Genet 4; 1811		•
Exon 2	Nonsense	c.34C>T	p.Q12*	5 - Definitely pathogenic	>0.99	Adem (2003) Cancer 97; 1		P
Exon 2	Indel	c.38_39delATinsGGG		5 - Definitely pathogenic	>0.99	Lim (2009) J Cancer Res Clin Oncol 135; 1593		•
Exon 2	Missense	c.53T>C	p.M18T	4 - Likely pathogenic	0.9840	Easton DF et al., Am J Hum Genet, 81: 873-883, 2007.	Tavtigian et al., Human Mutation 29: 1342-1354, 2008.	۶
Exon 2	Nonsense	c.55C>T	p.Q19*	5 - Definitely pathogenic	>0.99	Machackova (2008) BMC Cancer 8; 140		•
Exon 2	Deletion	c.61delA		5 - Definitely pathogenic	>0.99	Thirthagiri (2008) Breast Cancer Res 10; R59		•
Exon 2	Insertion	c.62dupT		5 - Definitely pathogenic	>0.99	Yassaee (2002) Breast Cancer Res 4; R6		•

§ 5 🔅 X

Management of BRCA+ Women

Prophylactic surgery	Mastectomy Oophorectomy			
Chemoprevention	Tamoxifen Oral contraceptives			
Screening	Mammograms MRI Ultrasound Clinical breast exams			

• Breast

- Monthly breast self-exams (begin by age 18)
- Early clinical surveillance (begin by age 25)
 - Biannual clinical breast exams at a breast center
 - Annual mammography
 - Sonography? MRI?
- Ovarian: no good options
 - Transvaginal ultrasound
 - CA-125 blood levels

Conclusion:

Identifying high-risk individuals will help surveillance and prevention of breast/ovarian cancer.

Germline Pharmacogenetics in Breast Cancer

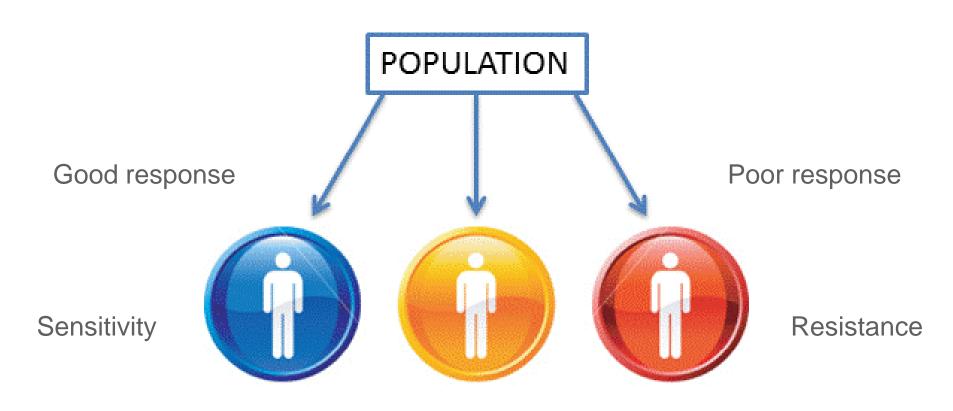
Gwen McMillin, PhD, DABCC(CC,TC) Medical Director, Toxicology Co-Medical Director, Pharmacogenetics



NATIONAL REFERENCE LABORATORY

AR P LABORATORIES

Germline vs. Somatic Genetics



Adapted from the National Cancer Institute and the American Society of Clinical Oncology

Germline Pharmacogenetics

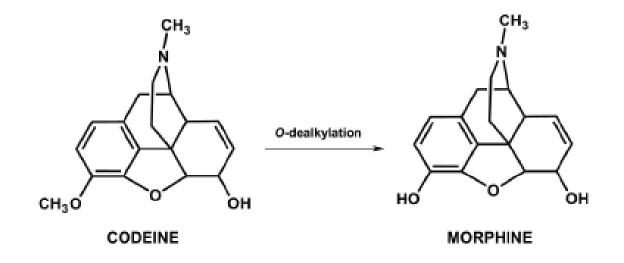
Inherited genes can predict/explain if and how a person will tolerate and respond to a drug:

- Pharmacokinetics, such as drug metabolism
- Pharmacodynamics, such as drug response

No side effects

Adverse effects

ğ

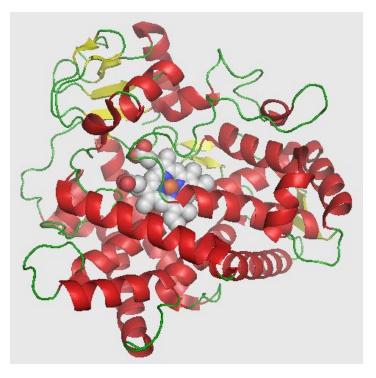

3

X

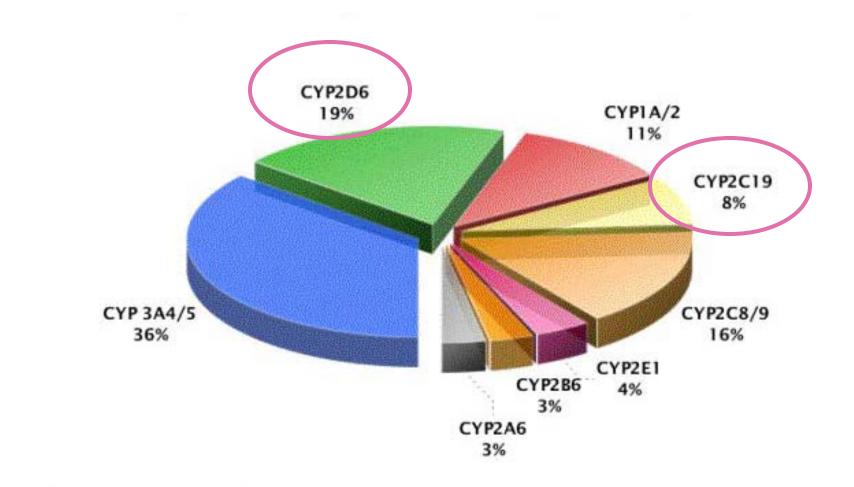
Unconventional dose and/or dosing frequency

Drug Metabolism

- Most drugs are metabolized.
- Some drugs require metabolism to be converted to an active form (drug activation); these drugs are called "prodrugs."



ğ


3

Drug Metabolism (cont.)

- Most drugs are inactivated by metabolism to promote elimination of the drug.
- Drug metabolism is mediated by enzymes; the cytochrome P450 (CYP) family is one of the most clinically significant.

Proportion of Drugs Metabolized by P450 Enzymes

Adapted from: Wrighton SA et al. Crit Review Toxicology 1992;22:1-22.

Kashuba and Bertino. Mechanisms of drug interaction. In Drug Interactions in Infections Diseases. Humana Press. 2001.

§ 3 🔅 🎗

Relationship to Breast Cancer

CYP2D6

- Major enzyme responsible for activation of tamoxifen and some pain drugs
- Major enzyme responsible for *inactivation* of many drugs, such as antidepressants

CYP2C19

- Minor enzyme responsible for activation of tamoxifen
- Major enzyme responsible for *inactivation* of many drugs, such as antidepressants and gastrointestinal drugs

ğ

Genetic variants can increase, decrease, or obliterate metabolism.

Common Genetic Variants (Alleles)

CYP2D6

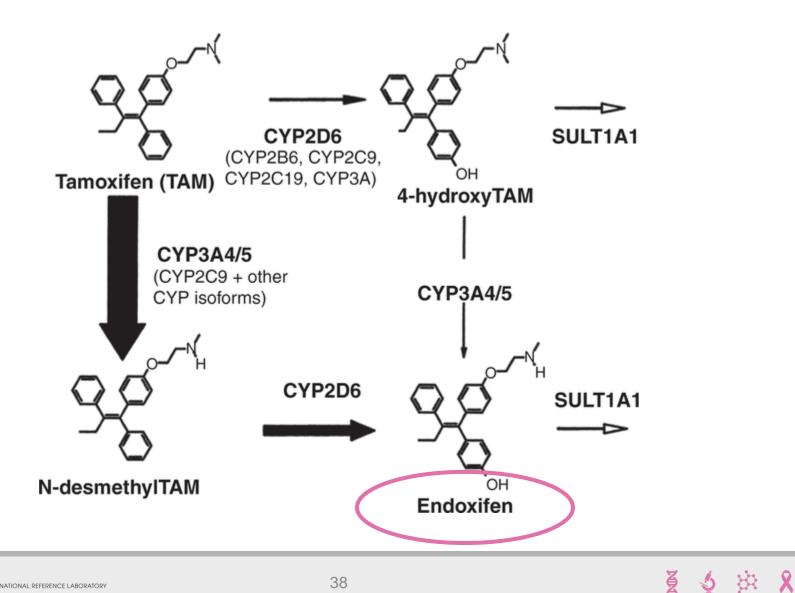
- CYP2D6*4 (\downarrow function)
 - 1-8% of Asians
 - 6–18% of Caucasians and African-Americans
 - o 8% of Middle Easterners
- CYP2D6*1 or 2xN (↑ function)
 - o 1% of Asians
 - 2–3% of Caucasians and African Americans
 - o 7% of Middle Easterners

CYP2C19

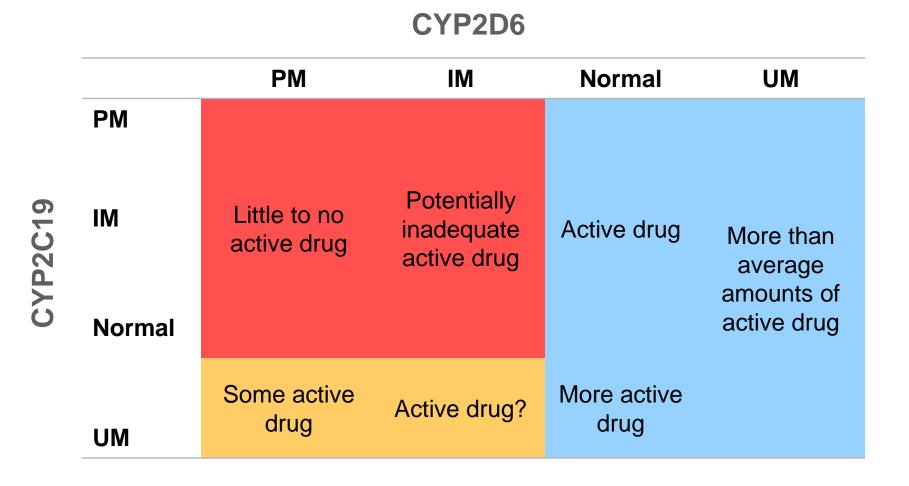
- *CYP2C19*2* (↓ function)
 - o 30–35% of Asians
 - 15–20% of Caucasians and African Americans
 - o 55% of Oceanians
- *CYP2C19*17* (↑ function)
 - 1–15% of Asians
 - 15–20% of Caucasians and African Americans
 - o 2.5% of Oceanians

Two Alleles = Genotype

From which phenotype is predicted

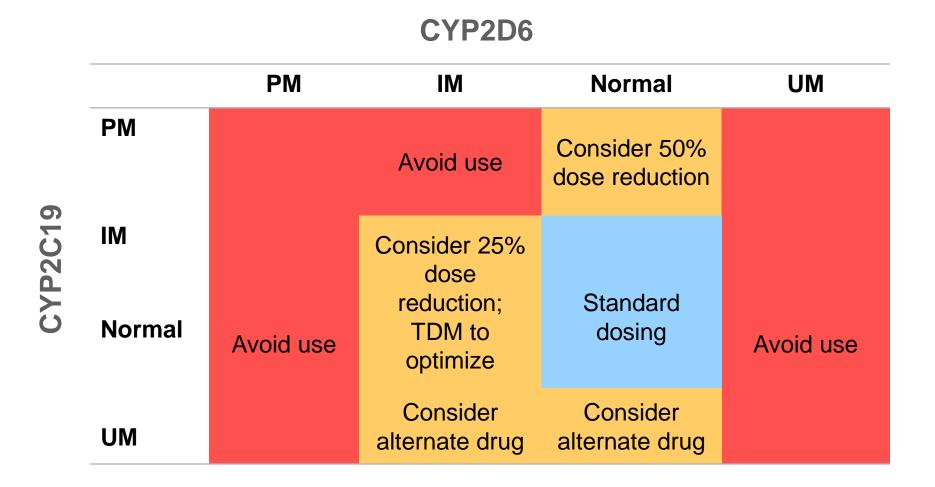

- EM = extensive metabolizer = normal
- IM = intermediate = combinations of non-functional and/or reduced function alleles and/or normal alleles
- PM = poor = two non-functional alleles
- UM = ultra-rapid = duplications of functional alleles or alleles that increase expression

Tamoxifen


- Most commonly prescribed anti-estrogen
- Prodrug
- Used since 1971 for breast cancer treatment, adjuvant therapy, prevention, and several other indications
- Annual sales in the U.S. > \$500 million
- ~35% of women do not respond

Simplified Schematic of Tamoxifen Metabolism

Theoretical Effect of CYP Phenotypes on Activation of Tamoxifen



Z 3

X

- 83

CYP Phenotype and Amitriptyline Recommendations

https://www.pharmgkb.org/guideline/PA166105006

CYPs for Other Drugs Used in Treating Breast Cancer Patients

CYP2D6

- Antidepressants
 - Paroxetine, venlafaxine
- Other psychiatric drugs
 - Risperidone, atomoxetine
- Analgesics
 - Codeine, tramadol, oxycodone
- Cardiac drugs
 - Flecainide, propafenone

CYP2C19

- Antidepressants
 - Citalopram, sertraline
- Gastrointestinal drugs
 - Omeprazole, lansoprazole, rabeprazole
- Cardiac drugs
 - Clopidogrel
- Other misc. drugs
 - Voriconazole, clobazam

CYP Tests at ARUP

Single gene

- CYP2D6: 0051232
 - 14 variants and gene duplication/deletion
- CYP2C19: 0051104
 - 9 variants

Multi-gene DME panel

 Includes CYP2D6, CYP2C19, and CYP2C9 (test code 2008920)

Notes:

- **CYP3A5** will be available with the November 2015 hotline and will be added to the gene panel in 2016.
- A saliva kit will be available soon to promote non-invasive (not blood), outpatient collections.
- Custom interpretation for multi-gene panel is anticipated for 2016.

• Germline pharmacogenetic testing can help personalize drug therapy by predicting whether a patient will be able to metabolically activate and inactivate drugs.

 CYP genetic testing is relevant to all breast cancer patients who are prescribed drugs, particularly tamoxifen, antidepressants, and opioid analgesics.

