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Premature ovarian failure (POF) causing hypergonadotrophic hypogonadism occurs in 1% of women. In majority
of cases the underlying cause is not identified. The known causes include: (a) Genetic aberrations, which could
involve the X chromosome or autosomes. A large number of genes have been screened as candidates for causing
POF; however, few clear causal mutations have been identified. (b) Autoimmune ovarian damage, as suggested by
the observed association of POF with other autoimmune disorders. Anti-ovarian antibodies are reported in POF
by several studies, but their specificity and pathogenic role are questionable. (c) Iatrogenic following surgical,
radiotherapeutic or chemotherapeutic interventions as in malignancies. (d) Environmental factors like viral infec-
tions and toxins for whom no clear mechanism is known. The diagnosis is based on finding of amenorrhoea before
age 40 associated with FSH levels in the menopausal range. Screening for associated autoimmune disorders and
karyotyping, particularly in early onset disease, constitute part of the diagnostic work-up. There is no role of
ovarian biopsy or ultrasound in making the diagnosis. Management essentially involves hormone replacement and
infertility treatment, the only proven means for the latter being assisted conception with donated oocytes. Embryo
cryopreservation, ovarian tissue cryopreservation and oocyte cryopreservation hold promise in cases where
ovarian failure is foreseeable as in women undergoing cancer treatments.
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Introduction

The average age for menopause in Western populations of

women is approximately 51 years. Premature ovarian failure

(POF) or premature menopause refers to development of ame-

norrhoea due to cessation of ovarian function before the age of

40 years. The diagnosis is based on elevated FSH levels in

menopausal range (usually above 40 IU/l) detected on at least

two occasions a few weeks apart (Conway, 2000).

Women with POF suffer from anovulation and hypoestro-

genism and present with primary or secondary amenorrhoea,

infertility, sex steroid deficiency and elevated gonadotrophins

(Kalantaridou et al., 1998). The condition affects approximately

1% of women, occurring in 10–28% of women with primary

amenorrhoea and 4–18% in those with secondary amenorrhoea

(Coulam et al., 1986; Anasti, 1998). Early loss of ovarian func-

tion has significant psychosocial sequelae and major health

implications (Taylor, 2001); nearly 2-fold age-specific increase

in mortality rate has been reported (Snowdon et al., 1989).

A wide spectrum of pathogenic mechanisms may lead to the

development of POF including chromosomal, genetic, auto-

immune, metabolic (galactosaemia), infectious (mumps) and

iatrogenic (anticancer treatments) causes. In a large proportion

of cases no cause is found and they are classified as idiopathic

or karyotypically normal spontaneous ovarian failure (Laml

et al., 2000; Pal and Santoro, 2002); whereas up to 30% of cases

may have an autoimmune cause (Conway et al., 1996).

In the embryo, germ cells migrate from the urogenital ridge to the

primitive ovary where they proliferate to form 3.5 £ 106 oocytes in

each ovary by about 20 weeks of intrauterine life. Most of these

germ cells are destroyed through apoptosis (Hsueh et al., 1994,

1996). The ovary is endowed with a fixed number of primordial

follicles at the time of birth, about 1 £ 106 in each ovary. This

number steadily dwindles throughout life as a result of atresia and

recruitment towards ovulation (Gosden and Faddy, 1998). Fewer

than 500 of the original 7 £ 106 (0.007%) oocytes are released in

the entire reproductive life span of a woman.

In idiopathic POF, there may be involvement of as yet

unknown mechanisms affecting the rate of oocyte apoptosis

(Morita and Tilly, 1999). This may lead to a reduced com-

plement of oocytes in the ovaries at birth or accelerated atresia.

Using ultrasound, follicles have been reported in up to 40% of

POF patients (Mehta et al., 1992). However, ultrasonography or

ovarian biopsies are not helpful in prognostication of future

ovulation and fertility.
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In a recent thought provoking article, Johnson et al. (2004)

have challenged the concept that each woman is endowed with

an irreplenishable number of gametes in the ovary. Through three

different sets of experiments they came to a conclusion that

ovarian germ cells are a dynamic population and undergo

constant renewal. Such a novel concept that challenges the cen-

tral dogma in reproductive sciences is likely to stir a flurry of

debate and to be followed by further studies exploring the issue.

Genetic causes of POF

Most cases of POF are idiopathic, and the underlying mechan-

isms are largely unknown; however, observation of familial

cases with POF indicates the role of genetic aberrations in its

pathogenesis (Conway, 1997). Though genetic defects mostly

involve the X chromosome, an increasing number of studies

have documented autosomal involvement (Table I).

Several methods have been used to elucidate the cause of

POF—transgenic ‘knockout’ animals, mutation screening of

candidate genes in affected women, analysing pedigree data in

linkage analysis and lately, population genetics. Various gen-

etic mechanisms implicated in pathogenesis of POF include

reduced gene dosage and non-specific chromosome effects that

impair meiosis. These can lead to ovarian failure by causing

decrease in the pool of primordial follicles, increased atresia

of the ovarian follicles due to apoptosis or failure of follicle

maturation.

Familial POF

The overall incidence of familial cases among women with POF

seems to be low, around 4%, though there are conflicting data

from various studies (Starup and Sele, 1973; Conway et al.,

1996). Epidemiological studies suggested a higher incidence of

approximately 30% (Cramer et al., 1995; Torgerson et al.,

1997). In a large Italian study, Vegetti et al. (1998) showed that

in one-third of the idiopathic POF patients this condition was

inherited. A subsequent study reported the incidence of familial

cases to be 12.7% (van Kasteren et al., 1999). The variation

between reported incidences might be explained by differences

in the definition of POF and the idiopathic form, by differences

in population recruitment and by selection and recall bias.

Pedigree studies on affected families show a mode of inheri-

tance suggestive of autosomal dominant sex-limited transmission

or X-linked inheritance with incomplete penetrance (Coulam

et al., 1983; Mattison et al., 1984; Bondy et al., 1998; Christin-

Maitre et al., 1998; Vegetti et al., 1998). Female sex preponder-

ance was found in siblings of 30 families of idiopathic POF

suggesting that an X chromosome defect is inherited as a major

cause of ovarian failure (Davis et al., 2000).

An adequate family history can distinguish between familial

or sporadic POF. The risk of female relatives developing POF

may be high in familial POF as compared to sporadic cases.

Early diagnosis of familial predisposition permits prediction of

impending menopause and susceptible women can be guided to

achieve their reproductive goals by timely planning of pregnancy

(Davison et al., 1998).

When considering the following list of genetic associations of

POF, it is obvious that the strength of evidence linking each

anomaly with POF is variable. In some instances there is a

statistical association with the anomaly also occurring in normal

women [Fragile site mental retardation 1 gene (FMR1)]

(Cronister et al., 1991); in others only a single case represents

the link (Noggin) (Kosaki et al., 2004). Included here are con-

ditions where the genetic link is indirect such as galactose-1-

phosphate uridyltransferase (GALT), where biochemical damage

of the ovary occurs and autoimmune regulator (AIRE) which

triggers autoimmune damage.

X chromosome defects

Familial as well as non-familial X chromosome abnormalities

have been described in women with POF. These abnormalities

range from a numerical defect like complete deletion of one X

(Turner’s syndrome) and trisomy X to partial defects in form of

deletions, isochromosomes and balanced X autosome transloca-

tions (Zinn, 2001).

X monosomy

Complete or near complete absence of one X chromosome, as

seen in Turner’s syndrome leads to ovarian dysgenesis charac-

terized by primary amenorrhoea, short stature and characteristic

phenotypic features.

One X chromosome is inactivated in each cell of female

mammals for dosage compensation of X-linked genes between

Table I. Genes implicated in POF

Categories Chromosome Gene Gene locus

Mutations

identified

X chromosome

genes

FMR1 Xq27.3

FMR2 Xq28

BMP15 Xp11.2

Autosomal

genes

FOXL2 3q22–q23

FSHR 2p21–p16

LH receptor 2p21

FSH beta variant 11p13

LH beta 19q13.32

Inhibin A 2q33–q36

GALT 9p13

AIRE 21q22.3

EIF2B2, -4, and -5 14q24.3, 2p23.3, 3q27

NOGGIN 17q22

POLG 15q25

Candidate

genes

X chromosome

genes

DIAPH2 Xq22

DFFRX Xp11.4

XPNPEP2 Xq25

ZFX Xp22.3–p21.3

FSHPRH1 Xq22

XIST Xq13.2

Autosomal

genes

WT1 11p13

ATM 11q22.3

Mutations

not

identified

X chromosome

genes

AT2 Xq22–q23

c-kit 4q12

SOX3 Xq26–q27

Autosomal

genes

MIS 19p13.3–13.2

D.Goswami and G.S.Conway

392



males and females (Lyon, 1994). However, several X-linked

genes escape inactivation and are vital for normal function of X

chromosome (Zinn et al., 1993; Zinn and Ross, 1998).

Two functioning X chromosomes are therefore necessary for

normal ovarian function.

In the presence of only one X chromosome in Turner’s syn-

drome, ovarian follicles degenerate by birth. This may be the

result of a lack of diploid dosage of one or more vital genes,

both alleles of which are active in oogenesis. Histological data

indicate that oogenesis proceeds normally in these individuals

until diplotene oocytes begin to be incorporated into nascent

follicles. There is a subsequent block to production of complete

follicles manifesting as fetal follicular atresia. In 80% of cases,

the paternally derived X is lost (Loughlin et al., 1991).

Cytogenetic data indicate that most Turner’s syndrome physical

features map to the short arms of the X (Xp) and Y (Yp) chromo-

somes (Kalousek et al., 1979; Fryns et al., 1981; Goldman et al.,

1982; Jacobs et al., 1990; Temtamy et al., 1992; Ogata and

Matsuo, 1995) and result from reduced dosage of genes on the

short arm of the X chromosome. Further investigations narrowed

down the search for the affected chromosomal segment to the

2.6Mb Xp–Yp pseudoautosomal region. Zinn et al. (1998) using a

statistical method to examine genotype/phenotype relations

mapped Turner’s syndrome traits, including POF, to a critical

region in Xp11.2–p22.1. X and Y copies of the region are identi-

cal, and all genes within this region appear to escape X inactivation

(Rappold, 1993). Eighteen such candidate genes have been

reported (Lahn and Page, 1997) and more are likely to exist.

Trisomy X

It is commonly believed that X trisomy, which affects 1 in 900

women in general population, has no significant effect on ferti-

lity; however, association with hypergonadotrophic POF has

been reported. Jacobs et al. (1959) first described triple X syn-

drome with POF in 1959. Further documentation of associated

ovarian failure in this rare sex chromosome aneuploidy is in

form of occasional case reports (Menon et al., 1984; Itu et al.,

1990; Holland, 2001). Its relative prevalence among women

with POF is not known (Lucas et al., 1971). In one reported

series, 2 of 52 (3.8%) patients with POF had the triple X syn-

drome (Goswami et al., 2003). POF has also been reported in a

girl with 48XXXX (Rooman et al., 2002). The underlying mech-

anism could be analogous to that observed among patients with

Klinefelter’s syndrome.

Mosaicism

45X/46XX and 45X/47XXX: These individuals carry mixed germ

lines and manifest phenotypic abnormalities and POF similar to

monosomy X but 12% are reported to menstruate (Simpson,

1975).

Deletions

X chromosome deletions associated with POF are more common

than translocations. Deleted X chromosomes necessarily leave a

portion of the normal X unpaired and isodicentrics probably

interfere with pairing, resulting in atresia of oocytes.

While deletions commonly involve the short arm of the X

chromosome (Xp), the fraction of deletions that show POF is far

higher in the Xq13–25 region (Simpson and Rajkovic, 1999).

Deletions at Xp11 result in 50% primary amenorrhoea and 50%

secondary amenorrhoea. Deletions at Xq13 usually produce

primary amenorrhoea. A phenotypic difference has also been

noted between distal deletions, associated with preserved ovarian

function, and proximal deletions, associated with ovarian failure.

However, the relation is imperfect, since large deletions that

remove the whole critical region for POF, in Xq21, were found

not to be associated with ovarian failure (Merry et al., 1989).

Translocations

In contrast to generally neutral effects of balanced autosomal

translocations, balanced X/autosomal translocations very often

lead to POF with more than 100 cases of post-pubertal women

with X/autosomal balanced translocations reported (Therman

et al., 1990).

The deleterious effect on ovarian function results from X

breakpoints that fall on the long arm between Xq13 and Xq26.

A ‘critical region’ for normal ovarian function has therefore

been proposed for Xq13–q26 (Sarto et al., 1973; Phelan et al.,

1977; Therman et al., 1990). Within this region the most fre-

quent breakpoints involve two specific regions defined as POF

loci. POF1 Xq26–qter (Tharapel et al., 1993) and POF2

Xq13.3–Xq21.1 (Powell et al., 1994). These are separated by a

short region in Xq22. It has been suggested that chromosome

dynamics in the region could be sensitive to structural changes

and the resulting unpaired chromosome provokes a pachytene

checkpoint during meiosis leading to oocyte apoptosis

(Burgoyne and Baker, 1984).

Distal deletions involving the POF1 locus are associated with

POF at ages 24–39 years (Krauss et al., 1987; Tharapel et al.,

1993). Various molecular techniques and bioinformatics have

been used to map the POF1 locus and identify the putative genes

for POF (Davison et al., 2000).

The translocations involving the POF2 locus cause POF at an

earlier age of 16–21 years (Powell et al., 1994). Sala et al.

mapped the X autosome translocations in 11 women with POF

to POF2 locus involving a 15Mb YAC contig, with the majority

of the breakpoints localized along the whole Xq21 region

between loci DXS233 and DXS1171 (Sala et al., 1997). They

suggested that a single gene is unlikely to be responsible for

ovary development and/or oogenesis rather several genes may be

present along the critical region and they may be interrupted by

the balanced translocations. However, it must be noted that

many breakpoints on the X chromosome are not associated with

POF (Therman et al., 1990).

POF genes on the X chromosomes

Molecular investigations in women with POF and experiments

on transgenic animal models have led to the identification of a

number of candidate genes for POF. It is assumed that POF may

result from mutations involving these genes. Such mutations

have been identified in ,10% of POF cases (Harris et al., 2002)

and functions of many of these genes are not known. Therefore,

none is accepted as a genetic marker for POF.

FMR1

The FMR1 gene is situated in Xq27.3, outside the Xq POF criti-

cal region. The mutations in this gene can lead to expansion of
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a trinucleotide repeat located at its 50 UTR region. Four types of

alleles are identified based on the number of repeats: normal

(6–40), grey-zone (41–60), premutated (61–200) and fully

mutated (.200). The full mutation is associated with fragile

X mental retardation syndrome, the most common form of inher-

ited mental retardation.

The FMR1 gene is expressed in oocytes and encodes an

RNA-binding protein involved in translation. Rife et al.

conducted immunohistochemical fragile X mental retardation

protein (FMRP) studies in a full mutated female fetus. In the

ovary samples, FMRP expression was seen in all germ cells sur-

rounded by FMRP-negative paragranulosa and interstitial cells.

The Mullerian epithelium of the fetal Fallopian tube was con-

tinuously positive in the control case, whereas the full mutation

carrier showed a discontinuous patchy pattern (Rife et al., 2004).

In a study of murine FMR1 expression pattern, enhanced levels

were seen in the fetal ovary while in the mature ovary no

specific FMR1 expression signal was found. As proliferation of

oogonia takes place in fetal ovary, it was suggested that FMR1

serves a special function during germ cell proliferation (Bachner

et al., 1993).

POF was first noted as an unexpected phenotype among het-

erozygous carriers of the fragile X premutation in the early

1990s. Subsequent studies showed that FMR1 trinucleotide

expansions in the premutation range of 50–200 repeat

units, but not full mutations, are associated with POF

(Cronister et al., 1991; Schwartz et al., 1994, Partington et al.,

1996). The underlying mechanism for this association is not

clear.

Presently, there exists firm evidence for a significant associ-

ation between fragile X premutation carrier status and premature

menopause as shown both by the analysis of women carrying

the premutated allele (Cronister et al., 1991) and by the screen-

ing of women affected by POF (Conway et al., 1995, 1998;

Vianna-Morgante et al., 1996; Murray et al., 1998). The results

of an international collaborative study examining premature

menopause in 760 women from fragile X families showed that

16% of the 395 premutation carriers had experienced menopause

prior to the age of 40 compared with none of the 238

full mutation carriers and one (0.4%) of the 237 controls

(Allingham-Hawkins et al., 1999).

The incidence of FRAXA premutations has been shown to

vary among women with POF depending on the proportion of

sporadic and familial cases. Thirteen per cent of pedigrees with

the familial POF and 3% of women with the sporadic form of

POF have been found to carry FRAXA premutations compared

with an expected prevalence of 1:590 (Conway et al., 1998).

Hundscheid et al. (2000) reported that carriers who received the

premutation from their fathers were at a higher risk of POF

(28%) than those who received the premutation from their

mothers (4%) suggesting that POF may be limited to premuta-

tions that are paternally inherited. However, this finding was not

substantiated in subsequent studies (Murray et al., 2000; Vianna-

Morgante and Costa, 2000). From the practical point of view,

FRAXA premutations are certainly worth seeking in those with

familial POF in order to enable genetic counselling and hope-

fully, limiting the transmission of Fragile X syndrome to future

generations. Some units might also consider screening for

FRAXA premutations in sporadic cases.

Fragile site, folic acid type, rare (FRAXE)/fragile site mental

retardation 2 gene (FMR2)

In patients who have the cytogenetic changes of fragile X

syndrome but who are FMR1-mutation negative, Sutherland and

Baker (1992) identified a second site of fragility, symbolized

FRAXE. It was found to lie approximately 150–600 kb distal to

the FRAXA site at Xq28 and to be folate sensitive.

An excess of small alleles with fewer than 11 repeats at the

FRAXE locus were found in women with POF (Murray et al.,

1998). In their subsequent study involving a cohort of 209

women with POF, these were traced to three females with cryp-

tic deletions in FMR2, the gene associated with FRAXE. They

proposed that microdeletions within FMR2 may be a significant

cause of POF, being found in 1.5% of women with the con-

dition, and in only 0.04% of the general female population

(Murray et al., 1999).

Bone morphogenetic protein 15 gene, BMP15 (GDF-9B)

Bone morphogenetic proteins (BMPs) are extracellular signalling

proteins belonging to transforming growth factor-b superfamily,

which also includes growth/differentiation factors (GDFs).

BMP15 is an oocyte-specific GDF that stimulates folliculogen-

esis and granulosa cell growth and is expressed in oocytes

during early folliculogenesis. It shares a coincident expression

pattern with the closely related mouse GDF-9 gene, which is

essential for normal folliculogenesis in mice (Dong et al., 1996).

BMP15 gene maps to Xp11.2 within the Xp POF critical

region (Dube et al., 1998; Aaltonen et al., 1999). It is presum-

ably expressed from both X chromosomes in oocytes, and could

potentially show a gene dosage effect.

Di Pasquale et al. (2004) reported heterozygous mutation in

BMP15 in two sisters with POF presenting with primary amenor-

rhoea. The mutation involved A to G transition at base pair 704

of the BMP15 gene that resulted in a tyr235-to-cys (Y235C)

amino acid substitution. The father was a hemizygous carrier,

whereas the mother had a wild type BMP15 coding sequence.

The mutation was found in a highly conserved part of the

BMP15 gene encoding the propeptide region and was not found

in 210 alleles from 120 ethnically matched controls. This con-

dition represents an unusual example of X-linked human disease

exclusively affecting heterozygous females who inherited the

genetic alteration from the unaffected father.

Autosomal involvement in POF

Autosomal translocations

Autosomal translocations are uncommon in women with POF;

most reports of translocations document X/autosome balanced

translocations, with no common autosomal breakpoint. Burton

et al. (2000) reported translocation between two autosomes,

chromosomes 2 and 15–46; XX,t(2;15) (q32.3;q13.3) in a

woman with POF. They also reviewed three other cases of auto-

somal translocations in women with POF (Hens et al., 1989;

Kawano et al., 1998).

Autosomal genes

POF is seen in several disorders involving autosomal genes.
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Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES)

This autosomal dominant genetic condition, first described by

Vignes in 1889, is characterized by complex eyelid malfor-

mation. Two forms are described—type I with POF in affected

females and type II not associated with POF (Zlotogora et al.,

1983). POF related infertility is inherited as an autosomal

dominant sex-limited trait in these families.

Amati et al. (1996) showed that the BPES-I associated with

POF maps to 3q22–q23, as does type II. Crisponi et al.

(2001) cloned putative winged helix/forkhead transcription fac-

tor gene, FOXL2 that is mutated in both BPES types I and II.

FOXL2 appears predominantly in the ovary in adult humans

and its corresponding gene is the first human autosomal gene

in which dominant mutations have been implicated in

ovarian maintenance and differentiation. Recently, a human

FOXL2 mutation database was published that included 135

intragenic mutations and variants of FOXL2 (Beysen et al.,

2004).

Harris et al. (2002) found two FOXL2 variants with a pre-

sumed pathogenic effect in 2 of 70 patients with non-syndromic

POF. However, other studies involving phenotypically normal

women affected by POF did not reveal any mutations indicating

that mutations in the FOXL2 coding region are rarely associated

with non-syndromic POF (De Baere et al. 2001, 2002; Bodega

et al., 2004).

FSH receptor (FSHR)

FSH has an important role in the recruitment and development

of ovarian follicles during the folliculogenesis. FSHR gene maps

to 2p21–p16.

Aittomaki et al. (1995) reported a missense mutation of the

FSHR in six multiplex families in Finnish population. The

mutation at position 566 of exon 7 of the FSHR gene resulted in

a substitution of a valine for alanine at residue 189 and was

manifest as hypergonadotrophic ovarian dysgenesis. Transfection

experiments showed that the mutation leads to a dramatically

reduced binding capacity and cyclic AMP production after FSH

stimulation in spite of apparently normal binding affinity in cells

expressing the mutated receptor protein. Other novel mutations

involving FSHR have also been reported (Touraine et al., 1999;

Doherty et al., 2002; Meduri et al., 2003).

In the UK and in other populations, mutations of the FSHR

gene were found to be rare in women with POF or resistant

ovary syndrome (Layman et al., 1998; Conway et al. 1999;

Takakura et al., 2001; Sundblad et al., 2004).

An earlier study of FSHR genes in patients with POF revealed

the existence of polymorphisms (Whitney et al., 1995), which

do not appear to have pathophysiological significance with

regard to ovarian function (Liu et al., 1998; Conway et al.,

1999).

LH receptor

LH receptor maps to 2p21. Latronico et al. (1996) reported a

woman with amenorrhoea and ovarian resistance to LH who had

a homozygous substitution of thymidine for cytosine at position

1660 of the LH receptor gene that resulted in abnormal trunca-

tion of the receptor. The affected male siblings had Leydig cell

hypoplasia.

FSH beta-subunit variant

Gonadotrophins (FSH and LH) and intact hypothalamo–pitu-

itary–ovarian axis are vital for normal ovarian functions. Severe

gonadotrophin receptor defects or defects in post-receptor mech-

anisms may contribute to hyposensitivity or early atresia of fol-

licles leading to POF (Conway, 1996). Matthews et al. reported

a case with primary amenorrhoea and infertility due to a

mutation in the gene (map locus 11p13) encoding b-subunit of

FSH (Matthews et al., 1993). However, in another study no

mutations were found in the gene for FSH-b in 18 women with

POF that would diminish binding of FSH to target cells (Layman

et al., 1993).

LH beta-subunit variant

Takahashi et al. (1999) have reported an increased prevalence of

a variant LH with a mutant beta subunit in women with POF

(18.4%) as compared to controls (8.5%). In a subsequent study

involving women with ovulatory disorders, they reported five

novel silent polymorphisms of LH-b subunit using PCR-ampli-

fied gene sequencing (Takahashi et al., 2003).

Inhibins

Inhibin, a glycoprotein, is a gonadal hormone that inhibits syn-

thesis and secretion of pituitary FSH. It has been considered as a

strong candidate gene in the aetiology of POF.

An elevated serum FSH level and low inhibin B level in the

early follicular phase has been reported to relate with reproduc-

tive ageing (Soules et al., 1998) and diminished ovarian reserve

(MacNaughton et al., 1992). The presence of low serum inhibin

levels in POF further supports its role in the pathophysiology of

POF (Petraglia et al., 1998).

One variation of INH alpha gene, G769A, has been associated

with POF (Shelling et al., 2000; Marozzi et al., 2002; Dixit

et al., 2004), the prevalence of which may vary in different

populations from 0–11% (Dixit et al., 2004; Jeong et al., 2004).

GALT gene

Impairment in GALT metabolism leads to galactosaemia, a rare

autosomal recessive disorder. The GALT gene maps to chromo-

some 9p13. POF is reported in 60–70% of female patients with

galactosaemia (Waggoner et al., 1990; Laml et al., 2002). Galac-

tosaemia induced decrease in initial number of oogonia, ovarian

follicular damage in fetal life induced by galactose or its metab-

olites and defective gonadotrophin function and could be

involved in pathogenesis of POF.

AIRE gene

Mutations in the AIRE gene, responsible for autoimmune poly-

endocrinopathy-candidiasis-ectodermal dystrophy (APECED)

syndrome, can lead to ovarian insufficiency. The gene maps to

chromosome 21q22.3. More than 40 AIRE gene mutations are

known (Wang et al., 1998; Laml et al., 2002). In a survey of 72

patients with APECED, hypogonadism was present in 60% of

patients aged .12 years (Perheentupa, 1996).

Eukaryotic initiation factor 2B

A rare association of ovarian failure with white-matter

abnormalities on cerebral magnetic resonance imaging has
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been observed (Schiffmann et al., 1997). These cerebral

abnormalities are similar to those in childhood ataxia with

CNS hypomyelination (CACH)/vanishing white-matter leuko-

dystrophy (Schiffmann et al., 1994; van der Knaap et al.,

1997). Fogli et al. (2003) tested eight karyotypically normal

patients from seven families with association of ovarian failure

with white-matter abnormalities for mutations in the five sub-

units (a–1) of the eukaryotic translation initiation factor 2B

(eIF2B). They found mutations in three of the five EIF2B

genes (EIF2B2, -4 and -5, which map to 14q 24.3, 2p23.3 and

3q27, respectively) that were earlier shown to cause childhood

ataxia with central nervous system hypomyelination/vanishing

white-matter disease leukodystrophy (Leegwater et al., 2001;

van der Knaap et al., 2002). However, in a subsequent study

involving 93 patients with POF who did not have leukodystro-

phy or neurological symptoms none of these mutations were

identified. The authors concluded that EIF2B mutations are an

uncommon cause of pure spontaneous POF (Fogli et al.,

2004).

Noggin mutation

Haplo-insufficiency of the NOG gene on 17q22 encoding Noggin

leads to proximal symphalangism (SYM1), an autosomal-

dominant disorder characterized by ankylosis of the proximal

interphalangeal joints, fusion of carpal and tarsal bones, brachy-

dactyly and conductive deafness (Gong et al., 1999). NOG is

expressed in the ovary and acts as an antagonist for BMPs,

including BMP4 and BMP7 (Zimmerman et al., 1996; Groppe

et al., 2002) which play an important role in ovarian function

(Shimasaki et al., 1999, 2003).

Kosaki et al. (2004) have recently reported a case of POF and

SYM1 with mutation in NOG. They proposed that an NOG

mutation raises the susceptibility to POF by perturbing the func-

tions of BMPs in a certain fraction of patients who have a high

predisposition to POF because of other genetic and/or environ-

mental factors.

Mitochondrial DNA polymerase g mutations

Luoma et al. have reported that women with progressive exter-

nal ophthalmoplegia have early menopause—before the age 35

years. They analysed the gene sequence of mitochondrial DNA

polymerase g (POLG), the enzyme implicated in pathogenesis of

this mitochondrial disease, and documented mutations in mem-

bers of all the seven families studied. The corresponding gene

maps to 15q25. Clinical assessment of these patients showed

significant cosegregation of Parkinsonism with POLG mutations

(Luoma et al., 2004).

Syndromal associations

Cheng and Stenson (2003) described two siblings with bilat-

eral corneal anaesthesia associated with multiple systemic

abnormalities including ovarian failure. The combination of

these abnormalities with parental consanguinity was suggestive

of an inherited syndrome. Women with POF are also more

likely to exhibit ocular surface damage and symptoms of dry

eye than age-matched controls suggesting a role of sex hor-

mones in the health and disease of the ocular surface (Smith

et al., 2004).

Schupf et al. (1997) reported that age-adjusted likelihood of

menopause was twice as high in women with Down’s syn-

drome as in women with other intellectual disabilities. Treated

thyroid conditions did not influence menstrual status and did

not modify the relationship between Down’s syndrome and

menstrual status. The underlying cause could be related to

accelerated ageing.

Candidates genes for POF

While any gene encoding a component of reproductive function

can be considered a candidate, here we review a selection of

‘candidate’ POF genes that have been raised in the past.

Diaphanous 2 Drosophila homologue (DIAPH2)

Bione et al. (1998) characterized human homologue of the

DIAPH2 and demonstrated that this gene is disrupted by a break-

point in a family with POF associated with a balanced X; 12

translocation, t(X; 12) (q21; p1.3).

The protein (DIA) is a member of the formin homology

FH1/FH2 family of proteins and affects cytokinesis and other

actin-mediated morphogenetic processes that are required in

early steps of development. Mutated alleles of the gene affect

gonadogenesis and lead to sterility (Castrillon and Wasserman,

1994). DIA is proposed to be involved in oogenesis and affects

the cell divisions that lead to ovarian follicle formation.

Drosophila fat facets related X-linked gene (DFFRX)

This gene, also known as USP9X, maps to Xp11.4 and encodes

an enzyme that removes ubiquitin from protein conjugates, pro-

tecting them from proteosomal degradation (Jones et al., 1996).

USP9X is ubiquitously expressed, has a Y homologue, and

escapes X inactivation, consistent with possible gene dosage

effects. No mutations have been reported in USP9X; however,

azoospermic males have been reported to harbour deletions and

point mutations of closely related USP9Y homologue (Brown

et al., 1998; Sun et al., 1999).

X-propyl aminopeptidase 2 (XPNPEP2) gene

This gene encodes an X-linked aminopeptidase P enzyme that

hydrolyzes N-terminal Xaa–Pro bonds that are found in bradyki-

nins, other cytokines and collagen. It maps to critical region

Xq25. Although the physiologic substrates for the enzyme are

not known, XPNPEP2 is believed to be a candidate gene for

POF as it was found to be disrupted by a balanced X-autosome

translocation associated with secondary amenorrhoea (Prueitt

et al., 2000).

X-linked zinc finger gene (ZFX)

ZFX lies within the critical region for ovarian failure and maps

to Xp22.2–p21.3. It encodes a ubiquitously expressed zinc finger

transcription factor of unknown function (Page et al., 1987).

ZFX was cloned as a homologue of ZFY, a former candidate for

the testis determining factor on the Y chromosome. It escapes

inactivation, and therefore deletions or mutations in one of its

copies might cause haploinsufficiency (Schneider-Gadicke et al.,

1989). Heterozygous and homozygous Zfx mutant female mice

have been shown to have a diminished germ cell numbers

suggesting a role for this gene in POF (Luoh et al., 1997).
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FSH primary response homologue 1 (FSHPRH1)

It is the human homologue of rat gene Leucine-Rich Primary

Response Gene-1 (LRPR1), which is rapidly induced in Sertoli

cells in response to FSH (Roberts et al., 1996). It maps to Xq22

and is expressed in the developing ovary, even before the FSHR.

It is therefore proposed as a candidate gene for disorders of

gonadal development and gametogenesis.

X inactivation-specific transcript (XIST)

An abnormality in the mechanism of X inactivation may lead to

POF. XIST is a gene exclusively expressed from the inactive

X. It is located within the X inactivation centre at band Xq13.2

and is thought to be intricately involved in X inactivation

(Brown et al., 1991). Mutations in human XIST might cause

skew inactivation patterns resulting in haploinsufficiency of vital

ovarian developmental genes and POF.

Wilms tumor 1 gene (WT1)

The transcriptional factor WT1 is expressed in high levels in

follicles at early stages of development and because WT1 over-

expression represses the promoter activity of inhibin-alpha gene,

this nuclear protein may be important in the maintenance of fol-

licles at early stages of development. The gene is proposed as a

candidate gene for POF and maps to 11p13 (Rose et al., 1990).

Ataxia telangectasia

Infertility is a common feature of the inherited human disease

ataxia telangectasia (Boder, 1975). ATM, the mutated gene maps

to chromosome 11q 22.3 and is a member of a family of kinases

involved in DNA metabolism and cell-cycle checkpoint control.

The ATM gene product plays an essential role in a diverse group

of cellular processes, including meiosis, the normal growth of

somatic tissues, immune development and tumor suppression.

ATM-deficient mice are completely infertile due to complete

absence of mature gametes in adult gonads (Barlow et al., 1996;

Elson et al., 1996; Xu et al., 1996). Infertility in the mouse

models is attributed to meiotic arrest at the zygotene/pachytene

stage of prophase I as a result of abnormal chromosomal synap-

sis and subsequent chromosome fragmentation.

Negative studies

Here we report those candidate genes that have been subject to

mutation screening with a negative result. It is likely that many

such studies may not have been published and therefore this

cannot be considered a definitive list.

Angiotensin II type 2 (AT2) receptor genes

AT2 receptor is highly expressed in fetal tissues and rapidly

decreases after birth. The receptor is activated in some patho-

physiological states and is suggested to be involved in pathogen-

esis of diseased states like myocardial infarction and cardiac

hypertrophy. Granulosa cells of rat atretic follicles express high

level of AT2 receptor and therefore its role in POF has been

investigated. However, examination of the entire coding

sequence of this receptor (mapped to Xq22–q23) in two differ-

ent families of sisters with POF failed to reveal any changes in

nucleotide sequences (Katsuya et al., 1997).

c-kit gene

Studies in mice have demonstrated that c-kit, a transmembrane

tyrosine kinase receptor, plays a critical role in gametogenesis.

The human KIT gene is located on chromosome 4 at map locus

4q12. Mutations in the human KIT gene have been identified as

a cause of Piebaldism, a rare autosomal dominant disorder of

melanogenesis characterized by patchy absence of pigmentation

of the skin and overlying hair (Spritz and Beighton, 1998;

Richards et al., 2001). Shibanuma et al. (2002) investigated

40 women with, 46; XX spontaneous POF using PCR based

single-stranded conformational polymorphism analysis and DNA

sequencing and found one silent mutation and two intronic poly-

morphisms. They concluded that mutations in the coding regions

of the KIT gene appear not to be a common cause of 46XX

spontaneous POF in the studied population of North American

women.

SRY related HMG-box (SOX) 3 gene

The genes encoding DNA-binding motif of the HMG-box class

and showing homology to SRY (sex determining region Y), the

putative testis determining gene have been named SOX, for SRY

related HMG-box. The close homology between SRY and SOX3

might suggest that each is responsible for its respective gonadal

development: SRY for the testis and SOX3 for the ovary.

The SOX3 gene has been mapped to Xq26–q27 (Stevanovic

et al., 1993). A deletion of this gene was detected in a male

patient with a contiguous gene syndrome of severe mental retar-

dation, small testes, lower limb skeletal defects and contractures

(Wolff et al., 1997). However, screening of 164 women with

POF did not reveal any mutations in this gene (Conway, unpub-

lished observations).

Müllerian-inhibiting substance (MIS ) gene

MIS is a testicular hormone responsible for Müllerian duct

regression in male sexual development and acts as an oocyte

meiosis inhibitor in the rat ovary (Takahashi et al., 1986; Ueno

et al., 1989). In mice, MIS null females though fertile have been

shown to undergo earlier reproductive senescence possibly

because of an early depletion of their stock of primordial

follicles (Durlinger et al., 1999). The MIS gene (map locus

19p13.3–p13.2) and the MIS receptor type II gene (map locus

12q13) were evaluated as candidate genes for POF and poly-

cystic ovary syndrome; however, direct sequencing revealed no

causative mutations in the coding regions of these genes (Wang

et al., 2002).

Autoimmune causes of POF

Some cases of POF may be due to an abnormal self-recognition

by the immune system. Irwine et al. reported on autoimmunity

in patients with POF using indirect immunofluorescence (IFL) in

1968. Subsequently, in the past three decades much evidence

has accumulated to suggest that autoimmune mechanisms are

involved in pathogenesis of up to 30% of cases of POF (Conway

et al., 1996). This evidence takes the form of clinical association

of POF with other autoimmune diseases, demonstration of ovar-

ian autoantibodies, studies involving mouse models or histolo-

gical studies on ovarian tissue from affected patients.
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Clinical associations

The most convincing evidence comes from the commonly

observed association of POF with other autoimmune disorders.

In general, it is considered that about 20% may have a history of

other autoimmune disorders, most commonly autoimmune thy-

roid disease. Occasional studies have reported this association in

as many as 39% of women with chromosomally competent POF

(Alper and Garner, 1985; LaBarbera et al., 1988). Both endo-

crine (thyroid, hypoparathyroid, diabetes mellitus, hypophysitis)

and non-endocrine (chronic candidiasis, idiopathic thrombocyto-

penic purpura, vitiligo, alopecia, autoimmune haemolytic

anaemia, pernicious anaemia, systemic lupus erythematosis

(SLE), rheumatoid arthritis, Crohn’s disease, Sjogren syndrome,

primary biliary cirrhosis and chronic active hepatitis) auto-

immune associations are described (Rebar and Cedars, 1992;

Hoek et al., 1997; Betterle et al., 2002).

Clinically, autoimmune ovarian failure is broadly discussed in

two scenarios: (a) in association with autoimmune Addison’s

disease and (b) isolated or associated with other autoimmune

diseases.

Histological evidence for autoimmune damage in POF

Histological examination of ovarian biopsies in POF with associ-

ated adrenal autoimmunity reveals lymphocytic and plasma cell

infiltration of the ovary particularly around steroid-producing

cells of the developing follicles, and sparing of primordial fol-

licles. Perivascular and perineural inflammatory infiltrates are

also seen (Sedmak et al., 1987; Bannatyne et al., 1990). Histo-

logical evidence of oophoritis is reported to be rare (,3%) in

POF in absence of adrenal involvement (Hoek et al., 1997).

POF and Addison’s disease

About 2–10% of POF cases are known to be associated with

adrenal autoimmunity (Bakalov et al., 2002). This may be clini-

cal or subclinical (presence of adrenal antibodies in absence of

hypocortisolism) and may precede Addison’s disease by 8–14

years. In the general population, the prevalence of adrenal

insufficiency is approximately one in 10 000 (Kong and Jeffco-

ate, 1994). In a study involving 123 women with POF, four

(3.2%) tested positive for adrenal antibodies by IFL assay

(Bakalov et al., 2002). The authors suggested that measuring

adrenal antibodies would be an effective screening method to

detect autoimmune adrenal insufficiency in young women with

spontaneous POF and that a standard adrenocorticotropic hor-

mone stimulation test should be performed when positive.

POF may be part of the autoimmune polyglandular

syndromes (APS) when accompanied by other autoimmune

endocrinopathies (Table II). POF is more common with APS

types I and III than with APS type II (Kauffman and Castracane,

2003). Sharing of autoantigens between ovary and adrenal

glands, particularly the side-chain cleavage enzyme may explain

the association of ovarian failure and Addison’s disease. An

autoimmune response to these steroidogenic enzymes and

ovarian steroid cells appears to mediate destruction of ovarian

function in these cases.

POF in absence of Addison’s disease

Thyroid autoimmunity is the most common association followed

by parietal cell antibodies (Hoek et al., 1997). More than normal

association with insulin-dependent diabetes mellitus (IDDM) and

myasthenia gravis has also been reported (Ryan and Jones,

2004). In one study of women with SLE, anti-ovarian antibodies

were detected in 84% (Moncayo-Naveda et al., 1989). In many

cases non-ovarian autoimmune involvement may exist only at

subclinical level.

Non-ovarian autoantibodies

Several studies have reported increased prevalence of positive

thyroid peroxidase and parietal cell autoantibodies in POF

(de Moraes et al., 1972; Mignot et al. 1989a). Belvisi et al.

(1993) reported that 40% of 45 women with POF were positive

for at least one organ-specific autoantibody most common being

antithyroid antibodies (20%). In the control group, only one

woman (3.6%) showed autoimmunity. A more recent study by

Novosad et al. (2003) reported similar findings; they did not find

higher prevalence of antinuclear antibodies as reported earlier

(Ishizuka et al., 1999).

Ovarian autoantibodies

The presence of organ specific autoantibodies supports the role

of autoimmune mechanism in several endocrine diseases. Anti-

ovarian antibodies are reported in POF by several studies but

their specificity and pathogenic role are questionable.

Table II. Autoimmune polyglandular syndromes and POF

APS type Inheritance Autoimmune involvement Age group Incidence of POF

APS I Autosomal recessive caused by

a mutation in the autoimmune

regulator (AIRE) gene on

chromosome 21

Chronic mucocutaneous candidiasis,

adrenal and parathyroid failure

Children age 3–5 years

or in early adolescence

17–50%

(Ahonen et al., 1990)

APS II

(more common)

Polygenic, characterized by dominant

inheritance and association with

HLA DR3

Primary adrenal failure (Addison’s disease)

with autoimmune thyroid disease

(Schmidt’s syndrome) and/or type

1 diabetes (Carpenter’s syndrome)

Adults in the third

or fourth decade

3.6–10%

(Betterle et al., 2004)

APS III Apart from the absence

of adrenal failure, no

clinical differences between types

II and III have been described

Thyroid failure and other

immunological syndromes with exclusion

of Addison’s disease

Adults
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In an initial study, Coulam and Ryan (1979) demonstrated

presence of ovarian antibodies in serum of patients with POF by

immunoprecipitation of radiolabelled human ovarian protein.

Different methods have since been tried to identify anti-

ovarian antibodies the most common being enzyme-linked

immunosorbent assay (ELISA) and IFL. However, search for

organ specific ovarian antibodies in POF has yielded conflicting

results so far.

Luborsky et al. (1990) used ELISA to study sera from

45 patients POF. A combined total of 69% of the sera were posi-

tive for either ovary or oocytes. In a subsequent study, ovarian

antibodies were found in 53% of women with premature meno-

pause (Luborsky et al., 1999). Using whole tissue homogenate

from human ovaries at different ages as antigen, Fenichel et al.

(1997) found positive circulating ovarian antibodies with ELISA

in 59% of patients with idiopathic POF. Wheatcroft et al. (1997)

found that ovarian antibodies were detected in 27% of idiopathic

POF patients by ELISA but only 7% were positive by IFL. Such

variable results were attributed to the different stages of the dis-

ease when tested, methodological differences and by the multi-

plicity of potential immune targets that comprise various

steroidogenic enzymes, gonadotrophins and their receptors, the

corpus luteum, zona pellucida and oocyte.

Presently none of these tests is well standardized, nor do they

relate with ovarian histology. Use of commercial ovarian anti-

body tests therefore needs caution as immunomodulatory treat-

ment based on these results may cause more harm than good;

osteonecrosis secondary to glucocorticoid therapy in POF has

been reported (Kalantaridou et al., 1999).

Possible antigenic targets for antibody mediated autoimmune

damage in POF

Study of anti-ovarian autoantibodies has led to the identification

of putative ovarian epitopes, which may enable better under-

standing of the pathologic mechanisms involved in POF.

Steroid producing cells

Autoantibodies to steroid-producing cells—steroid cell autoanti-

bodies (SCA)—have been detected in POF by IFL (Elder et al.,

1981; Sotsiou et al., 1980; Betterle et al., 1993). SCA react with

cells active in steroid synthesis, such as adrenal cortex, ovarian

theca interna and corpus luteum, testicular Leydig cells, and pla-

cental trophoblasts (Elder et al., 1981). These antibodies are

widely present in POF associated with Addison’s disease (87%)

but are rare in POF with non-adrenal associations or in isolated

POF (Falorni et al., 2002). These findings support the idea of a

shared autoimmune response in ovarian and adrenal autoimmu-

nity. The molecular nature of autoantigen(s) in POF unassociated

with Addison’s disease (idiopathic POF) remains unclear.

3b-hydroxysteroid dehydrogenase (3b-HSD) autoantibodies

The steroid cell enzyme, 3b-HSD has been identified as a target

of SCA in POF. It is involved in the steroid metabolic pathway

and is expressed in tissues recognized by SCA. 3b-HSD auto-

antibodies were found in 21% women with isolated idiopathic

POF using immunoblotting techniques and adrenal cDNA library

screening (Arif et al., 1996). However, a later study reported

3b-HSD antibodies to be rare (2%) in women with POF

(Reimand et al., 2000).

Gonadotrophin receptors blocking antibodies

Antibodies against FSH and LH receptors have been postulated

as having a role in the mechanism of ovarian failure

(Anonymous, Case records of the Massachusetts General

Hospital, 1986) akin to the antireceptor antibodies in other auto-

immune disorders, such as myasthenia gravis (Lindstrom et al.,

1976) (blocking antibodies to the acetylcholine receptor), some

forms of insulin-resistant diabetes (blocking antibodies to the

insulin receptor), and primary hypothyroidism (blocking anti-

bodies to the TSH receptor) (Drexhage et al., 1981). Studies by

Austin et al. (1979), Tang and Faiman (1983) and Anasti et al.

(1995) were unable to demonstrate blocking antibodies to LH or

FSHRs in patients with POF. However, Tang and Faiman did

observe greatest interference with FSHR interaction in a patient

who had POF with other autoimmune associations. In a recent

study using cell lines expressing human gonadotrophin receptors,

gonadotrophin receptor blocking antibodies were not detectable

in 69 patients with POF (Tonacchera et al., 2004).

Other ovarian antigens

Several other targets within the ovary for autoantibody induced

damage have been identified (Forges et al., 2004). McNatty et al.

(1975) detected cytotoxic effect of serum from patients with

Addison’s disease and autoimmune ovarian failure on human

granulosa cells in culture. In another study, sera from 21 of 26

patients with POF were able to block the growth of rat granulosa

cells in vitro (van Weissenbruch et al., 1991). The oocyte and

zona pellucida are other possible antigenic sites (Shivers and

Dunbar, 1977; Rhim et al., 1992; Smith and Hosid, 1994). Auto-

antibody to a zona pellucida 3 epitope has been shown to induce

autoimmune ovarian disease and POF in neonatal mice (Setiady

et al., 2003). The underlying mechanism was suggested to be

stimulation of de novo autoimmune pathogenic CD4 (þ) T cell

response by epitope-specific autoantibody.

Cellular immune abnormalities

Alteration of T cell subsets and T cell mediated injury is likely

to play an important role in pathogenesis of autoimmune POF as

evidenced by human studies and animal models of autoimmune

oophoritis (Mignot et al. 1989b, Melner and Feltus, 1999;

Nelson, 2001). This is similar to the pathology in other endo-

crine autoimmune diseases, such as IDDM, Graves’ disease, and

Addison’s disease. Chernyshov et al. (2001) have reported an

increase of autoantibody producing B cells and a low number of

effector suppressor/cytotoxic lymphocytes in their study com-

prising 68 patients with POF. Reduced NK cell number and

impaired NK cell activity have been documented in women with

POF and in murine post-thymectomy autoimmune oophoritis

(Pekonen et al., 1986; Hoek et al., 1995; Maity et al., 1997).

The role of cytokines has also been described in causing folli-

cular atresia in POF (Coulam and Stern, 1991; Naz et al., 1995).

Animal models

Autoimmune oophoritis and POF can be induced in mice by

neonatal thymectomy done 3 days after birth (Taguchi et al.,

1980; Kojima and Prehn, 1981; Kalantaridou and Nelson,

1998). The autoimmune damage is primarily mediated by T

cells (Sakaguchi et al., 1982; Smith et al., 1991). Humoral
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autoimmunity may also play a role as these mice generate a

spectrum of antibodies most of which react with antigens in the

oocyte cytoplasm. The inciting antigen in autoimmune disease

could be a common target of both autoreactive B and T cells.

Using immune serum from these mice, Tong and Nelson (1999)

isolated and characterized a novel oocyte-specific protein that

may play a role in autoimmune POF. Nelson (2001) cloned the

gene for the oocyte specific antigen designated ‘Maternal

Antigen That Embryos Require’. Such studies may lead to

recognition of a similar antibody marker for the human disease.

Immunogenetics in POF

The studies investigating genetic susceptibility for autoimmune

POF may help understand its pathogenesis.

Animal studies suggest involvement of immune-regulatory

regions outside the H-2 locus in determining susceptibility to

murine post-thymectomy autoimmune oophoritis (Kojima and

Prehn, 1981; Nair et al., 1996). Teuscher et al. (1996) identified

the locus determining genetic susceptibility to autoimmune POF

on mouse chromosome 3. There may be a role of similar predis-

posing genes for POF in women.

Among human studies, HLA-DQB1*0301 and HLA-

DQB1*0603 were shown to be associated with 3b-HSD auto-

immunity in POF (Arif et al., 1999). In a study comprising

37 patients with POF and 100 organ donors from the same popu-

lation, no statistically significant difference was found in the

distribution of A, B, Cw, DR and DQ antigens (Jaroudi et al.,

1994).

Studies on APS show association of HLA-DR3 with APS type

2 (Farid et al., 1980; MacLaren and Riley, 1986; Weetman,

1995). The most likely genetic candidate in this condition is pro-

posed to be at a locus controlling T cell development. Associ-

ations with HLA class II alleles have been reported in PAS type

I as well (Betterle et al., 1998). In APS I, mutations of the AIRE

gene play an important role. The AIRE gene is assigned to

chromosome 21q22.3 (Aaltonen et al., 1997) and its more than

40 mutations are reported (Wang et al., 1998).

In view of inconsistent findings on clinical and laboratory

studies, the mechanism for ovarian autoimmunity remains

obscure. Genetic or environmental factors might initiate the

immune response. The role of major histocompatibility complex

antigen and cytokines has been explored in human autoimmune

POF. The relative contribution of cell-mediated immunity and

antibody-mediated immunity is controversial. There exists a

possibility for disease-specific therapy to prevent further auto-

immune ovarian damage in selected POF patients with proven

autoimmune aetiology.

Diagnosis of autoimmune ovarian failure

The gold standard for detecting autoimmune causes of immune

ovarian destruction has been ovarian biopsy. However, because

there is no treatment proven safe and effective to restore fertility

this procedure cannot be advised in routine clinical practice

(Khastgir et al., 1994).

Specific defects of expression of cell surface markers on per-

ipheral blood lymphocytes have been shown to identify indivi-

duals destined to develop autoimmune pancreatic destruction

and type I diabetes mellitus, even before any other evidence of

autoimmunity. A similar study exploring cell surface expression

in women with POF showed a statistically significant increase in

CD8 density on T cells (Yan et al., 2000). Further development

of cell surface markers in combination with other diagnostic

tests could result in diagnosis of autoimmune POF before the

development of complete ovarian failure.

Miscellaneous causes of POF

Galactosaemia

Classic galactosaemia is a rare cause of POF. It is caused by

GALT deficiency and leads to a severe disease in the newborn.

According to one study, 81% of 47 affected women developed

ovarian failure, with primary amenorrhoea noted in eight, and

the majority experienced POF shortly after puberty (Waggoner

et al., 1990). Intracellular accumulation of galactose metabolites

or deficient glycosylation reactions could lead to decrease in the

initial number of oogonia through apoptosis. The clinical

management essentially includes hormonal replacement therapy

(Forges and Monnier-Barbarino, 2003).

Iatrogenic

In patients developing malignant diseases, radiotherapy and che-

motherapy can lead to POF (Koyama et al., 1977; Howell and

Shalet, 1998). However, there is little risk of premature meno-

pause in women treated with radiation fields that exclude the

pelvis (Madsen et al., 1995). Ovarian radiation of 9Grays render

humans infertile, though pregnancies have been reported after

significantly higher irradiation exposure (Spinelli et al., 1994).

The effect of radiotherapy is also dependent on dose and age

and on the radiation therapy field. The prepubertal ovary is rela-

tively resistant to this form of gonadotoxicity (Beerendonk and

Braat, 2005). Transposition of the ovaries in young women

requiring pelvic irradiation helps in preserving their ovarian

function.

POF is important sequelae of cytotoxic chemotherapy given

for various malignant diseases in young women. The structure

and function of granulosa cells and oocytes are affected by

chemotherapeutic agents. The gonadotoxic effect of chemo-

therapy is largely drug- and dose-dependent and is related to

age.

Almost any pelvic surgery has the potential to damage the

ovary by affecting its blood supply or causing inflammation in

the area. The exact risk is unknown and is thought to be very

small for routine operations. Uterine artery embolization, an

interventional technique used to manage various gynaecological

disorders, also has a potential to result in POF by compromising

the vascular supply to the ovary (Amato and Roberts, 2001).

Toxins and viruses

It is popular belief that sperm counts have fallen over recent

years because of exposure of the testicle to environmental toxins

or drugs. It is possible that the ovary is affected by the viruses

or toxins in a similar way. There also exist anecdotal reports of

virus infections being followed by ovarian failure (Wood, 1975;

Fox, 1992). Mumps oophoritis has been considered to be a cause

of POF (Morrison et al., 1975). Cigarette smoking is also
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implicated. Female smokers have been shown to experience

menopause earlier than non-smokers suggesting a possible detri-

mental effect of cigarette smoking on ovarian function though

further investigations are needed in this field (Di Prospero et al.,

2004). Women with epilepsy have also been reported to have an

increased risk for developing POF (Klein et al., 2001).

The effects of endocrine disruptors, heavy metals, solvents,

pesticides, plastics, industrial chemicals and cigarette smoke on

female reproduction has been reviewed (Sharara et al., 1998).

The mechanism by which chemicals affect ovarian function may

involve hormonal or immune disruption, DNA adduct formation,

altered cellular proliferation, or inappropriate cellular death.

Data on the association of chemical exposures and adverse

reproductive outcomes in humans are, however, equivocal and

further studies are needed to clarify which toxicants affect

human reproduction and how.

Management of POF

Management of POF needs to address the two major medical

issues—hormone replacement therapy (HRT) and infertility.

Women also require personal and emotional support to deal with

impact of diagnosis on their health and relationships. In addition,

associated pathology needs to be assessed and managed so that

long-term follow-up is essential to monitor HRT and for health

surveillance. Various issues of importance in the management of

women with POF are summarized in Table III.

HRT

Long-term HRT is needed for relief of menopausal symptoms

(including vasomotor instability, sexual dysfunction, mood,

fatigue and skin issues) and to prevent long-term health sequel

of estrogen deficiency, such as osteoporosis (Davis, 1996).

Estrogen replacement is usually continued up to the age of 50

years, when the risk and benefit of continued treatment are

reviewed (Armitage et al., 2003). No data are available to

evaluate the impact of treatment on risk factors, such as the

development of breast cancer or of cardiovascular events in

young women with POF and extrapolation from studies in older

women may not always be appropriate.

A wide range of HRT preparations are available for estrogen

replacement including oral, transdermal, subcutaneous and vagi-

nal routes of administration. An HRT regimen should be based

on the individual preferences of each patient. The dose of estro-

gen required by young women is titrated to prevent vasomotor

symptoms and vaginal dryness and may be higher than that used

in an older age group. Serum estradiol (E2) may be helpful in

those women using implants so as to avoid tachyphylaxis, but in

the majority symptoms alone are sufficient guide.

Once the choice of estrogen has been made, separate consider-

ation can be given to the progestin in women with an intact

uterus. First, the route may be oral, transdermal or uterine. With

the oral and transdermal routes there is a choice between con-

tinuous or sequential (for 10–14 days each month) delivery.

Continuous regimen avoids menstrual flow but break through

bleeding may be more common in young women compared to

an older age group in whom there is greater uterine atrophy.

Sequential regimen ensures monthly menstrual bleed, which may

be a psychological benefit to some young women (and absurd to

others!). Progestins vary from the more potent such as norethis-

terone to the weaker such as dydrogesterone. Trial and error will

allow the user to find the most suitable progesterone preparation.

Uterine delivery with the levonogestrel intrauterine device (Mir-

ena) has a great theoretical advantage allowing ‘estrogen only’

systemic preparations to be used avoiding the adverse effects of

oral progestins highlighted in the WHI and Million women

studies of older women (Beral, 2003; Chlebowski et al. 2003).

Androgen replacement is useful in some instances when persist-

ent fatigue and loss of libido persist despite optimised estrogen

replacement (Mazer, 2002; Arlt, 2003; Davis and Burger, 2003;

Chu and Lobo, 2004; Shifren, 2004).

To return to oral estrogen choices, conjugated equine estrogen

and 17 b-E2 have consistent and comparable effects on hot

flashes and may have similar short-term adverse effects (Nelson,

2004). Transdermal estrogen is very attractive because the avoid-

ance of first-pass liver metabolism, rapid onset and termination

of action, non-invasive self-administration, attainment of thera-

peutic hormone levels with low daily doses and potential for

improved patient compliance. (Henzl and Loomba, 2003). Of

particular note is the recent data that transdermal estrogen may

be free of an excess risk of thrombosis (Scarabin et al., 2003).

Lastly, some young women find the combined oral contraceptive

(COC) pill to be a ‘peer friendly’, discrete form of estrogen

replacement as opposed to HRT preparations. The COC, how-

ever, provides a fixed combination of estrogen and progesterone

with a ‘pill free week’ which contrasts from the greater flexi-

bility and uninterrupted estrogen possible with the HRT

alternatives.

Subcutaneous estrogen replacement involves placement of

25–50mg E2 pellets usually in the lower abdomen or buttocks.

Insertion is a minor office procedure and can also include testos-

terone implants if indicated. Return of symptoms, combined

with serum levels of E2, can be used to determine the timing of

redosing, which is about every 6 months for most women

(Jones, 2004).

Topical vaginal estrogen is often neglected and may be used

as an adjunct to systemic estrogen. Creams, pessaries, tablets

Table III. Issues in the management of women with POF

Education and counselling

Remission: The likelihood of recovery of ovulation is not possible to predict

There is no proven effective treatment for infertility

Adoption and oocyte donation are among the available options but require

guidance and counselling

Access to follow-up counselling is important as issues return with life

events such as pregnancy in family

Investigations

Thyroid function tests are useful as thyroid involvement is a common

association

Autoantibody screen including thyroid and adrenal antibodies

Karyotype for early onset POF and genetic screen for FRAXA premutation

Pelvic ultrasound and ovarian biopsy do not alter the management

Treatment

Estrogen and progesterone replacement is usually indicated

There is no comparative data to guide estrogen use in young women as

most studies on HRT involve post-menopausal women

Inform on all estrogen preparations—oral, transdermal and implants

Inform on media HRT scares and relevance to young women

Consider vaginal estrogen and testosterone supplements
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and vaginal ring appear to be equally effective for control of

symptoms (Suckling et al., 2003).

Natural estrogens do not prevent any spontaneous ovulatory

activity. Moreover, ovulation and pregnancy may occur in

women with POF who use the COC. Barrier contraceptives are

therefore recommended for women with POF who wish to avoid

pregnancy.

The general measures advised for prevention of bone loss

include improved physical activity, adequate diet, calcium and

vitamin D, and avoidance of behaviours that promote bone loss,

such as smoking and alcohol abuse. Monitoring bone mineral

density with dual energy X-ray absorptiometry scan helps ident-

ify the women with osteoporosis who require specific additional

intervention such as with bisphosphonates.

The efficacy of non-estrogen treatment modalities including

other hormonal preparations, non-hormonal drugs, homeopathic

preparations and non-drug treatments is not well documented

(Bachmann, 1994), but may find favour in women who are intol-

erant to exogenous estrogen.

Infertility

Women with POF have a 5–10% chance of conceiving at some-

time after diagnosis. Pregnancy loss in these circumstances is

reported at 20%, which is similar to that of normal population

(van Kasteren and Schoemaker, 1999). There are many case

reports and small series reporting use of various medical thera-

pies in an attempt to induce fertility in women with POF; how-

ever, the few randomized therapeutic trials that are available fail

to demonstrate any significant improvement in ovulation and

pregnancy rates. In a systematic review of the various thera-

peutic interventions thought to restore ovarian function in POF,

the authors concluded that interventions were equally ineffective

and unlikely to be an improvement on expectant management

(van Kasteren and Schoemaker, 1999). Only IVF and embryo

transfer using donor oocytes has demonstrated high success rates

and is considered to be the fertility treatment of choice in

patients with POF (van Kasteren, 2001).

The likelihood of recovery of ovulation is not possible to pre-

dict. However, it cannot be assumed that infertility in women

with POF is permanent or irreversible as in some cases hormone

levels and disease activity fluctuate and return to biochemical

normality. In a study of the effectiveness of gonadotrophins

suppression using gonadotrophin-releasing hormone agonist

(GnRHa) 4/26 (17%) women appeared to ovulate over 4 months

and the intervention had no effect on this outcome (Nelson et al.,

1992). In a similar study using E2 instead of GnRHa, 17/37

(46%) women were found to ovulate at least once during the 12

week study (Taylor et al., 1996).

There are several isolated cases of spontaneous pregnancies in

women with POF taking both estrogen and, interestingly, the

COC (Polansky and De Papp, 1976; Szlachter et al., 1979;

Ohsawa et al., 1985; Varma and Patel, 1988; Boulieu and Bully,

1993; Menashe et al., 1996). Alper et al. reported six women

who conceived after a diagnosis of POF. Two pregnancies

occurred while the women were receiving conjugated estrogen

therapy, two while taking oral contraceptives and two women

conceived spontaneously. There may be differences in fertility

outcome in cases with ovarian failure depending on the age of

onset. In a retrospective analysis of 86 ovarian failure patients,

none of the 23 patients with primary amenorrhoea due to ovarian

failure ovulated while seven of 63 (11.1%) with secondary ame-

norrhoea due to ovarian failure ovulated, and three of them con-

ceived and delivered normal, healthy infants (Kreiner et al.,

1988). The authors recommended a trial of E2 replacement with

close monitoring for ovulation in the women with secondary

amenorrhoea due to POF before oocyte donation. In another

series of 115 women with POF, those with secondary amenor-

rhoea continued to have intermittent ovarian function. Ovulation

was detected in 24% and pregnancy occurred in 8% while

ovulation was not detected in any of the women with primary

amenorrhoea (Rebar and Connolly, 1990).

Exogenous estrogen could act by sensitizing the granulosa

cells to the effect of FSH leading to ovulation and conception

(Alper et al., 1986). Oral contraceptives may act similarly by

down-regulating the LH and FSHRs (Check et al., 1989). How-

ever, interventional studies using oral contraceptives for gonado-

trophin suppression in POF failed to show resumption of

follicular activity (Buckler et al., 1993). Successful attempts at

ovulation induction have been reported with clomiphene

(Nakai et al., 1984) and gonadotrophins (Check et al., 1991;

Blumenfeld et al., 1993; Chatterjee et al., 1993). Recently, preg-

nancy was reported after stimulation with recombinant FSH of a

galatosaemia patient with ovarian failure (Menezo et al., 2004).

It was suggested that the impact of galactosaemia on the ovary

could be due to the absence of recognition of circulating FSH by

its receptor and not to a toxic alteration of the ovary by itself.

Combination of different modalities of treatment has also been

tried (Davis and Ravnikar, 1988).

Suppression of gonadotrophin secretion using GnRH ana-

logues has been tried in an attempt to reverse POF but was not

successful (Ledger et al., 1989; Surrey and Cedars, 1989). Simi-

larly no benefit could be demonstrated from the immunomodula-

tory and gonadotrophin-suppressing effects of danazol in

patients with karyotypically normal spontaneous POF (Anasti

et al., 1994).

Recovery of ovarian function may occur after regression of

the autoimmune status and control of coexistent endocrine

disease. In women with myasthenia gravis and ovarian failure,

thymectomy has resulted in resumption of menses, with or with-

out recovery of fertility (Lundberg and Persson, 1969; Bateman

et al., 1983; Chung et al., 1993). Finer et al. (1985) reported a

32-year-old woman with POF associated with ovarian autoanti-

bodies, autoimmune Addison’s disease and primary hypothyroid-

ism who became pregnant following the treatment of her thyroid

and adrenal deficiencies.

There also exist a few reports on a successful ovulation-

inducing treatment of selected women with POF (those with

other autoimmune phenomena) with immunomodulating thera-

pies, such as corticosteroids (Rabinowe et al., 1986; Taylor et al.,

1989). Pregnancy after corticosteroid administration has been

reported in POF occurring in a patient with polyglandular endo-

crinopathy syndrome (Cowchock et al., 1988). In another study,

11 consecutive women with POF were given prednisone 25mg

four times per day for 2 weeks. Two women demonstrated nor-

malization of their serum gonadotrophins, an increase of serum

E2, and ultrasonographic visualization of follicular growth, and

both conceived (Corenblum et al., 1993). Despite these case
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reports none of immunosuppressive therapies is proven to be

safe and effective by prospective randomized placebo-controlled

study and may be associated with complications such as osteone-

crosis (Kalantaridou et al., 1999).

Several novel strategies have been tried including combined

pentoxifylline–tocopherol treatment using 800mg of pentoxi-

fylline combined with 1000 IU of vitamin E given daily

for 9 months (Letur-Konirsch and Delanian, 2003) and growth

hormone-releasing hormone given in a dose of 1000mg/day

(Busacca et al., 1996).

Assisted conception with donated oocytes has been used to

achieve pregnancy in women with POF since 1987 (Asch et al.,

1987; Oskarsson et al., 1990; Rotsztejn et al., 1990). Presently it

remains the only means for fertility treatment in POF that carries

high success rate (Anonymous, Society for Assisted Reproduc-

tive Technology and the American Society for Reproductive

Medicine. Assisted reproductive technology in the United States,

2002). Cryopreserved embryos have also been used for ovum

donation in POF with a high pregnancy rate of 30% per transfer

(Abdalla et al., 1989).

In some cases, it is possible to foresee premature menopause

as in patients undergoing anticancer treatment with chemother-

apy. Because dividing cells are more sensitive to the cytotoxic

effects of these drugs, it has been hypothesized that inhibition of

the pituitary–gonadal axis using GnRHa would render the germ-

inal epithelium less susceptible to the cytotoxic effects of che-

motherapy (Ataya and Moghissi, 1989). Subsequent studies

confirmed that GnRHa cotreatment protects against POF during

cytotoxic chemotherapy (Blumenfeld et al., 1996, 2002). This

approach has also been advocated for young women requiring

gonadotoxic treatments for SLE, organ transplantation and other

autoimmune diseases (Blumenfeld and Haim, 1997; Blumenfeld

et al., 2000). Use of oral contraceptives during chemotherapy

has also been studied but the results failed to show protective

effect on ovarian function (Longhi et al., 2003).

Use of apoptotic inhibitors, such as sphingosine-1-phosphate,

is also been suggested as radioprotective and chemoprotective

agent against germ cell death. This agent may act by inhibiting

the signalling events involved in apoptotic process and protect

the patient from POF (Morita et al., 2000; Spiegel and

Kolesnick, 2002; Tilly and Kolesnick, 2002). The various

attempts at preventing POF in young women exposed to gonado-

toxic chemotherapy have been reviewed (Blumenfeld, 2003).

Other fertility options for women diagnosed with cancer

include IVF followed by cryopreservation of embryos, cryopre-

servation of mature oocytes and cryopreservation of ovarian

tissue (Poirot et al., 2002). The first option is not feasible in all

cases. Pregnancies and life births have been reported after

oocyte cryopreservation and subsequent intracytoplasmic sperm

injection (Chen, 1986; Borini et al., 2004). Preservation of the

structural complexity of the ovum is an important factor in

determining the outcome (Falcone et al., 2004). The use of ovar-

ian tissue cryopreservation for later use has been explored in

women undergoing anticancer treatment. Similarly, adolescent

girls with Turner’s syndrome still have follicles in their ovaries

(Hreinsson et al., 2002) and could be candidates for ovarian

cryopreservation.

Cryopreserved ovarian tissue could be used in two ways—

autograft and in vitro folliculo–oocyte maturation. Cryopreserved

human ovarian tissue has been found to be functional after re-

transplantation (Oktay and Karlikaya, 2000; Radford et al., 2001;

Gook et al., 2001). The first live birth after orthoptic transplan-

tation of cryopreserved ovarian tissue has been reported recently

(Donnez et al., 2004). Successful pregnancy is possible following

in vitro maturation of oocytes from antral follicles (Cha et al.,

1991). Human preantral follicles have been isolated and cultured

in humans and several animal species (Roy and Treacy, 1993;

Gutierrez et al., 2000). However, the vast majority of follicles in

human ovarian cortical tissue are primordial, which do not grow

well in culture (Abir et al., 2001) and it is not practical to isolate

primordial follicles from the cortical tissue before cryopreserva-

tion. Maturation of oocytes from primordial follicles after cryo-

preservation of ovarian tissue for use in IVF would be a further

step in management of infertility due to cancer treatment or

genetic causes (Hovatta, 2004).

A woman’s age would be a determining factor when consider-

ing ovarian cryopreservation. Children are most likely to benefit

from it as their ovary contains more primordial follicles than

adult women and other alternatives of oocyte or embryo cryopre-

servation are unavailable for them. It is also expected that by the

time these children grow up and need their ovarian tissue, the

modalities for its optimal use would become available (Aubard

et al., 2001).

Ovarian tissue cryopreservation and oocyte cryopreservation

thus hold promise for fertility preservation in the women likely

to undergo ovarian failure following cancer treatments. This

treatment may, however, be contraindicated in cases with poss-

ible metastasis to the ovaries where oocyte donation and IVF

would be safer (Shaw et al., 1996).
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