¢ Human Brain Mapping 30:209-219 (2009) ¢

Detecting Brain Growth Patterns in Normal
Children using Tensor-Based Morphometry

Xue Hua,' Alex D. Leow,'* Jennifer G. Levitt,> Rochelle Caplan,3
Paul M. Thompson,' and Arthur W. Toga'*

'Laboratory of Neuro Imaging, Brain Mapping Division, Department of Neurology,
University of California Los Angeles School of Medicine, Los Angeles, California
*Resnick Neuropsychiatric Hospital, University of California Los Angeles School of Medicine,
Los Angeles, California
*Department of Psychiatry and Biobehavioral Sciences, Division of Child Psychiatry,
University of California Los Angeles School of Medicine, Los Angeles, California

* *

Abstract: Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-
related increases in the volume of total white matter and decreases in the volume of total gray matter
of normal children. Recent adaptations of image analysis strategies enable the detection of human brain
growth with improved spatial resolution. In this article, we further explore the spatio-temporal com-
plexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear
elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children,
individual Jacobian growth maps are generated and then registered to a common anatomical space.
Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray mat-
ter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender
suggests a slowing down of the growth rate in regions with the greatest white matter growth. We dem-
onstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue
changes during development. Hum Brain Mapp 30:209-219, 2009.  ©2007 Wiley-Liss, Inc.
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INTRODUCTION

Advancements in magnetic resonance imaging (MRI)
technology and image analysis methods make the detailed
characterization of human brain development during
childhood and adolescence in vivo possible. The matura-
tion of a normal brain represents a complex and dynamic
developmental process. Detailed spatial and temporal
mapping of structural changes during this process aids in
understanding the basis of age-related cognitive advance-
ment and various brain developmental disorders.

Cross sectional neuroimaging studies have consistently
demonstrated reduction in overall cerebral gray matter
volume and growth in white matter with relatively stable
total brain volume from ages 4 to 20 years [Caviness et al.,
1996; Giedd et al., 1996; Jernigan et al., 1991; Pfefferbaum
et al.,, 1994; Reiss et al., 1996; Sowell et al., 1999a]. Fewer
studies have used longitudinal data to examine the
dynamic patterns of brain growth between childhood and
adolescence. Giedd et al. [1999] demonstrated a linear
increase in white matter and non-linear changes in gray
matter volume in a large-scale longitudinal pediatric neu-
roimaging study. Thompson et al. [2000] applied a tensor
mapping technique to a group of children repeatedly
scanned between the ages of 3 and 15 years and found a
rostro-caudal wave of growth at the corpus callosum in
the developing human brain. Sowell et al. [2004] described
correlated changes in cortical thickness and regional brain
size in right frontal and bilateral parieto-occipital regions
in children scanned twice between the ages of 5 and 11
years. Because the longitudinal method follows the same
brain as it matures, it addresses the issue of inter-individ-
ual variations in brain structures. As such, it provides a
more sensitive and finer toned measurement of individual
growth patterns than cross-sectional studies [Chung et al.,
2001; Giedd et al., 1999; Hand and Crowder, 1996; Sowell
et al., 2004; Thompson et al., 2000].

Studies using MRI-based volumetry have provided a
wealth of information for age-related changes in brain
morphometry [Giedd et al., 1996; Reiss et al., 1996]. How-
ever, traditional MRI-based volumetric methods demand
manual or semi-automatic image segmentations of the
equivalent regions across multiple brains. Measurements
obtained using these methods are usually confined to brain
regions that can be clearly defined. More recently, tensor-
based morphometry (TBM) has been introduced as a
method to identify regional structural differences from the
gradients of deformation fields (reviewed in Ashburner
and Friston [2003]). A deformation field, which stores the
relative positions of different brain structures, is first
obtained by spatially normalizing the MRI images of one
brain to another using non-linear registration. To charac-
terize local shape differences, a tensor field, also known as
a Jacobian matrix, is then calculated from the gradient of
the deformation field. A determinant is taken at each point
of the Jacobian matrix field to represent the volume of the
unit-cube after the deformation. Jacobian determinants are

usually coded by colors to indicate local volume loss or
gain [Ashburner and Friston, 2003; Chung et al., 2001;
Freeborough and Fox, 1998; Riddle et al., 2004; Toga,
1999]. When the TBM method is applied to longitudinal
data, the deformation field is obtained by registering the
MRI scans of the same subject acquired at different times.
Therefore, the Jacobian map faithfully represents the de-
velopmental changes in the brain. Because the Jacobian
matrix field is calculated over the entire volume without
explicit delineations of regions-of-interest (ROI), the TBM
method characterizes the local shape differences with a
much higher spatial resolution.

In this article, TBM is used to generate detailed tissue
growth maps from the longitudinal scans of 13 healthy
children between the ages of 6 and 19 years. By fitting a
linear model across all individual Jacobian maps voxel-
by-voxel, we also evaluate age and gender-related
volume changes in gray and white matter. We create
three-dimensional (3D) maps that represent the dynamics
of brain development, demonstrating a slowing down of
the growth rate over time in regions with the greatest
white matter growth.

MATERIALS AND METHODS
Subjects

Thirteen healthy children and adolescents (seven males
and six females) aged 6-19 are included in this article (Fig.
1). The mean age for the group was 12.3 = 2.6 years. Each
subject received a series of two high-resolution 3D mag-
netic resonance imaging (MRI) scans with an average
inter-scan interval of 2.85 * 0.85 years (min = 1.92 years;
max = 4.52 years). There was no significant age difference
between males (12.3 * 2.4 years) and females (12.3 * 2.9
years). All subjects were recruited as part of an ongoing
neuro-developmental project at the University of Califor-
nia, Los Angeles (UCLA). The subjects were screened for
neurological, psychiatric, language, or hearing disorders
by clinical interview, and for developmental history and
K-SADS_PL [Kaufman et al, 1997] through interviews
with the parents. This study was approved by the UCLA
Human Subjects Protection committee and all parents of
subjects provided written informed consent for participation.

MRI Acquisition

The sensitivity and reliability of TBM depend on the
contrast and stability of the scans. Thus, we followed the
standard scanning procedure. All scans were conducted
on a GE Signa 1.5 Tesla MRI scanner (GE Medical Systems,
Milwaukee, WI). High-resolution 3D MRI scans for each
subject were acquired with T1-weighted spoiled GRASS
(SPGR) sequences. A sagittal plane imaging acquisition
protocol was used with repetition time (TR) of 24 ms, echo
time (TE) of 9 ms, and flip angle of 22°, and 2 excitations.
The acquisition matrix was 256 X 256 X 124 with slice
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Figure I.
Ages and inter-scan intervals. Thirteen subjects are included in
this study with seven males and six females. The graph shows
the subjects’ ages (@ male; & female) and their corresponding
inter-scan intervals (vertical bars).

thickness of 1.2 mm and field of view of 24 cm. The image
voxel size was 0.9375 X 0.9375 X 1.2 mm.

Image Preprocessing

Skull and other non-brain tissues were removed using
an automated program, Brain Surface Extractor (BSE),
from the BrainSuite [Shattuck and Leahy, 2002]. A binary
mask was generated to include brain tissues like gray
matter, white matter, and cerebrospinal fluid. Non-brain
tissues (such as skull, scalp, and orbits) were left out and
labeled as zero. All sagittal plane images were manually
edited to lower the segmentation error caused by similar
image intensities between brain and non-brain tissues. A
3D radio frequency (RF) bias field correction algorithm
(N3) was applied to eliminate the field inhomogeneity in
MRI images caused by non-uniformities in the RF receiver
coils [Sled et al., 1998]. A validation study has demon-
strated the robustness of TBM with scans acquired using
SPGR sequence followed by N3 correction [Leow et al.,
2005b].

To account for global differences in positioning and size
among individual brains, all scans were rigidly aligned to
the stereotactic space defined by the International Consor-
tium for Brain Mapping (ICBM) [Mazziotta et al., 2001].
Specifically, we used the ICBM 53 atlas which is an aver-
age of 53 T1-weighted MRI scans of young healthy adult
brains. To linearly align the scans to ICBM53, a follow-up
scan was linearly registered to its baseline scan with 6-
parameter (6p) affine transformation, then both scans were
registered to ICBM53 using a same 9-parameter (9p) trans-
formation. Mutual information (MI), a measure of the sta-
tistical dependence between two distributions, was used as
a similarity measure for the above global transformations
[Maes et al., 1997]. At the step of 9p linear registration to

ICBMS53, all MRI images were resampled into an isotropic
matrix of 199 voxels in x-, y-, and z-dimensions with each
voxel interpolated to the size of 1 mm X 1 mm X 1 mm.

To inspect the quality of linear registrations, we used a
3D visualization tool called REGISTER, which automati-
cally overlays the arbitrary slice geometry of each scan
pairs in ICBM53 space [MacDonald, 1993]. All scans had
satisfactory results for linear registration without noticea-
ble distortion or mismatch.

Minimal Deformation Target

Studies have suggested that registration bias can be
reduced by using an unbiased group-average template. We
therefore constructed a minimal deformation target (MDT)
[Good et al., 2001; Kochunov et al., 2002; Kovacevic et al.,
2005; Woods et al., 1998]. To compute a MDT, the first
step was to create an affine average. All baseline images
were registered to ICBM53 using 9-parameter affine trans-
formations. After intensity normalization, the affine aver-
age template was created by calculating the mean intensity
at each voxel of the 13 scans. The second step was to cre-
ate a non-linear average. Here, each scan was non-linearly
registered to the affine average template using a non-linear
inverse consistent elastic intensity-based registration algo-
rithm [Leow et al., 2005a,b; Thompson et al., 2000; Wells
et al, 1996]. The deformation field was determined by
maximizing the mutual information of the image inten-
sities and minimizing the elastic energy of the deforma-
tion. A multi-resolution scheme was used. It started with a
Fast Fourier Transform (FFT) resolution of 32 X 32 X 32
and was followed by 64 X 64 X 64, which corresponds to
an effective voxel size of 30 mm® (199 mm/64 = 3.1 mm).
Convergence of MI was achieved iteratively with 300 itera-
tions at each resolution. We then created the non-linear av-
erage brain by voxel-wise averaging the intensities of the
13 images that have been non-linearly registered to the
affine average template. Finally, we created the MDT by
adjusting the non-linear average with inverse geometric

(a) Individual Brain (c) MDT

(b} Group Affine Average

Figure 2.
Minimal deformation target (MDT). The figure displays an axial
slice (z = 112) from (a) a randomly selected individual brain (b)

group affine average and (c) MDT. MDT is an unbiased brain
template that represents the common anatomy and anatomical
variations within the group.

s 211



¢ Huaetal. ¢

centering of the displacement fields [Kochunov, et al,
2002, 2005]. The MDT was subsequently used as the target
for inter-subject registration. Figure 2 displays the axial
slice of a randomly chosen individual brain, the group
affine average, and the MDT. The MDT reveals less ana-
tomical detail than the individual brain but it has less
noise and higher contrast compared to the affine average.

Jacobian Maps Construction

The same non-linear registration algorithm as used in
MDT construction was also used here to spatially normal-
ize both intra- and inter-subject shape differences. The de-
formation field obtained from intra-subject scan pairs
Umnira”" (1: subject index) represents individual growth (Fig. 3).
Annualized tissue change maps were derived from the de-
formation field obtained by warping the follow-up scan of
each subject to its baseline scan. Fifty iterations were
computed at each FFT resolution. The inter-subject regis-
tration Upner' encodes the variance between individual
brain anatomies. To conform individual Jacobian maps to
the same stereotactic space, the initial scan of each subject

was non-linearly aligned to the geometry of the MDT tem-
plate (32 FFT X 300 iterations; 64 FFT X 300 iterations).
The inter-subject displacement vector field Upne,” = (ity,
u,, u;), obtained from this step, was then applied to trans-
form the Jacobian growth map of each subject to the brain
coordinate defined by the MDT. Spatial normalizations
among different brains enable regional comparisons and
group analyses to be performed. See Figure 4 for a dia-
gram of the design. This approach is computationally in-
tensive; however, it helps to lower the vast inter-individual
variance in brain anatomy.

To adjust for variable time differences between scans,
we normalized the individual Jacobian maps by their
inter-scan intervals. As such, each map (percent tissue
change) was divided by its corresponding inter-scan inter-
val to create the annualized Jacobian map, which represents
the average change over 1 year. All results and statistical
analyses are based on the annualized Jacobian maps.

All image processing steps were automated using LONI
Pipeline Processing Environment which streamlines the
process and allows parallelization of multiple tasks [Rex
et al., 2003].

=
=
=
=
=
_
=

50

Number of Iterations

Figure 3.

Individual Jacobian (growth) map. The annualized Jacobian map,
representing the percentage of tissue growth per year, of an 8-
year-old boy, is displayed on cortical surface model (a), a cortical

model with the medial surface exposed (b), and white matter

surface model (c). (d) plots the MI values versus the number of
iterations. The transient increase in Ml value after the 50th iter-
ation is caused by up-sampling of the FFT resolution from 32 X
32 X 32 to 64 X 64 X 64.
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Warp diagram. Individual Jacobian maps are derived from the de-
formation matrix Uj,..", Which is obtained by iteratively deform-
ing the follow-up scan (Time 2) to the initial scan (Time |) of
the same subject. Variance between individual brains is explained
by inter-subject registration, U, The displacement vector
field Upeer' = (Ux U, Uy) is applied to transform the Jacobian
growth map of each subject (J7) to the brain anatomy defined
by the MDT template (bolded border). J{ represents the individ-
ual Jacobian map in the standard space.

Regions-of-Interest

ROI were defined according to the group average in the
ICBM53 space. Each brain was hand-traced by a trained
anatomist to generate masks that cover frontal, parietal,
temporal, and occipital regions separately. The masks were
then transformed into the ICBM space and the mathemati-
cal average of the masks was used to estimate the proba-
bilities of each region-of-interest. Brain regions were
defined based on probabilities that are greater than 70%.

Statistical Analyses

To assess the significance level of the Jacobian maps at
each voxel, we applied the bootstrap method [Efron and
Tibshirani, 1986, 1993]. Specifically, we generated 1,000 in-
dependent bootstrap samples, each of size n = 13 with
replacements from the 13 individual Jacobian maps. The
bootstrap estimate of standard error is the standard devia-
tion of the bootstrap replications [Efron and Tibshirani,
1993]. At each voxel, a one-sample t-test was conducted
based on the bootstrap sample mean and bootstrap esti-

mate of standard error. Next, permutation tests were
implemented to correct for multiple comparisons. Permu-
tation tests are non-parametric in nature, and are used in
this study to assess the overall significance of Jacobian
maps inside each region-of-interest. In our case, the null
hypothesis in consideration is that, for each ROI, there is
no tissue growth or loss. Under null hypothesis, the labels
of time 1 and time 2 are interchangeable within each sub-
ject. In other words, we can thus randomly multiply 1 or
—1 to the Jacobian map of each subject, as each Jacobian
map is simply noise under null. This procedure is, in
essence, the same as what was originally proposed by
Nichols [Nichols and Holmes, 2002], where group labels
were permuted (in our case, the two group labels are time
1 versus time 2). At each permutation, a label of 1 or —1
was randomly assigned to each of the 13 subjects and vox-
els with P < 0.05 (uncorrected) were identified. After
10,000 randomized tests, a ratio was calculated describing
what fraction of time an effect of similar or greater magni-
tude to the real effect occurs in the random assignments.
This ratio serves as an overall estimate of significance for
the maps (corrected for multiple comparisons) [Nichols
and Holmes, 2002]. Positive growth signals and negative
tissue loss were assessed separately in each region-of-inter-
est (frontal, parietal, temporal, and occipital lobes) (Table
I). For example, the permutation test of positive Jacobian
values rendered a P-value of 0.0054 (frontal lobe) (Table I),
indicating the overall significance level of tissue expansion
in the frontal lobe.

Age and gender effects were tested by modeling the
data with linear regression:

annual tissue growth rate = 8 - (age — mean age) + o
annual tissue growth rate = B - (age — mean age)
+ (% - gender + «)

The annual tissue growth rate was modeled with a con-
stant term o (intercept) which represents the percentage of
annual growth at the mean age, and a linear coefficient 3
(slope) that encodes the change of growth rate. To com-
pare our result with direct modeling of gray matter vol-
ume [Giedd et al., 1999], the intercept a corresponds to the
slope of the developmental trajectory of gray matter vol-
ume. Likewise, the linear coefficient § is comparable to the
quadratic term of gray matter regression. Gender effect
was explored by adding an additional term jy, which is a
gender specific component of «. Here we assumed that

TABLE I. Permutation test results®

Frontal lobe

Parietal lobe

Temporal lobe Occipital lobe

0.0054
0.3069

Tissue expansion (J > 0)
Tissue shrinkage (] < 0)

0.0211
0.0018

0.0635
0.0211

0.0111
0.0096

?The permutation test is not corrected for multiple ROI comparisons. Theoretically, one of the ROIs might be significant by accident.
However, the highly significant P values suggest those large effects can hardly be achieved by chance.
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males and females share the same slope term {3, as devel-
opmental curves were found to have similar shapes for
both genders [Giedd et al., 1999], therefore the second time
derivative of the curves which is also the slope of our lin-
ear regression model would be the same. Student’s t-tests
were used to examine the voxel-level significance of the
regression coefficients (uncorrected). Permutation tests
were used to assess the overall significance of age correla-
tion (ROI—the entire brain). A null distribution was
constructed after 10,000 random tests. For each test, the
subjects’ ages were randomly permuted and voxel-wise
regressions were conducted to identify voxels with age
correlation coefficient more significant than P = 0.05. Simi-
lar to the method introduced earlier, a ratio, describing the
fraction of time an random effect of similar or greater
magnitude to the real effect, was calculated to quantify the
overall significance of the age effect (corrected for multiple
comparisons) [Chiang et al., 2007; Thompson et al., 2003;
Nichols and Holmes, 2002].

RESULTS
Individual Growth Map

To illustrate how this non-linear registration technique
provides a detailed depiction of brain development, the
individual tissue change map of an 8-year-old boy (initial

scan conducted at age 6) is shown in Figure 3. The annual-
ized Jacobian map is superimposed on gray or white mat-
ter surface models (generated using the tissue classification
tool in BrainSuite [Shattuck and Leahy, 2002]). The annual-
ized growth rate is displayed in color map with the hot
and cold color representing local tissue expansion and at-
rophy respectively. Correspondingly, we visually inspected
all individual Jacobian maps and they share similar fea-
tures to the individual brain reported in Figure 3. How-
ever, older subjects generally display fewer changes with
weaker growth signals.

Mean Jacobian Map

Figure 5 displays the annualized mean Jacobian map of
the 13 subjects after bootstrap correction. The widespread
regions of tissue growth primarily correspond to the ana-
tomical boundaries of cerebral white matter. The volume
of fiber tract is also enlarged in several sub-regions of the
corpus callosum including genu, isthmus (arrow in Fig. 5),
and splenium.

Permutation Tests

Next, permutation tests were conducted to correct
for multiple comparisons. The results provide overall sig-
nificant levels of tissue expansion or atrophy in each
region-of-interest. Ten thousand randomization tests were

Figure 5.

Group mean growth map with t map. The bootstrap corrected
mean growth map is computed after all |3 individual maps are
geometrically aligned to the standard space. (a) and (b) display
the annualized mean growth rate and voxel-wise t-test result

(P < 0.05) respectively. Four different coronal sections (y = 53,
83, 103, and 133) and the corpus callosum are shown in (c).
The location of callosum isthmus is indicated by the arrow.
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conducted and rendered significant P-values (P < 0.05) of
tissue expansions in the frontal, parietal, and occipital
lobes. Concurrently, permutation tests validated the tissue
loss in the parietal, temporal and occipital lobes. As shown
in the mean map (Fig. 5), the regions of expansion corre-
spond generally to the white matter, while the majority of
atrophies are located in the gray matter (except in the pri-
mary sensorimotor areas). Thus, the permutation results of
tissue expansions correspond mainly to the white matter
growth and atrophies are related largely to the gray matter

Slice 1: z= 102
Slice 2: z=112
Slice 3: z= 122

He M o-l% -D5% ] 0.5% 1% 0

P value for B

loss. Refer to Table I for the full results from the permuta-
tion tests.

Age and Gender Effects

Age effects in growth patterns are studied by fitting a
linear regression model voxel-by-voxel over the Jacobian
matrix maps, with Jacobian values as dependent variables
and ages as explanatory variables. Figure 6 shows the
regression coefficients (terms o and ) and the correspond-

Horizontal Slice Selections:

z - Horizontal Index

P value for %

mp 13 O .05

005

3% 2% -1% 0 1%

Figure 6.

Linear regression with age and gender. Panel (a) shows the
MDT brain anatomy and the slice selections (z 102, 112, or
122). Panel (b) displays the result of linear regression with age.
Model: annual tissue growth rate = 3 - (age — mean age) + a.
The intercept o demonstrates a strong growth in white matter
at the mean age of 12.3 years. The linear coefficient 3 and its P-
value map from t-test (P < 0.05) depict the regions with changes
in growth rate. The dark blue regions signify a deceleration in

growth rates. Panel (c) illustrates the result of linear regression
with the added gender term. Model: annual tissue growth rate
= 3 - (age — mean age) + (x - gender + «). The same slice
selections as in panel (b) are used. Because the intercept a and
age coefficient 3 remain similar while the gender term has been
added, only the gender coefficient y and its P-value map (P <
0.05) are displayed.
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General

BN

5% -4% -3% 2% -1% 0 1% 2% 3% 4% 5%

Figure 7.
Tissue growth maps modeled by linear regression. Top row displays the growth maps at different ages
modeled with age-dependent linear regression as in Figure 6b. Bottom two rows show the gender
specific growth maps over time modeled with both age and gender effects as shown in Figure 6b,c.

The slice selection corresponds to the slice 2 in Figure 6.

ing P-values at the horizontal sections. The map of o dem-
onstrates an extensive growth of white matter tract system
at a rate of 1-3% annually, at the mean age of 12.3 years.
The result from the linear coefficient B suggests a slowing
down of the growth rate over time in regions with the
greatest white matter growth. An age effect on gray matter
shrinkage was also apparent, however, the effect is not
large enough to reach statistical significance. We attempted
to study the gender effect by adding an additional gender
specific component () for the intercept. The map of y vis-
ualizes the spatial difference in growth patterns between
the two genders. It is noteworthy that the regional growth
at lateral ventricles and caudate nuclei is higher for boys
than girls.

The overall significance of the age effect in the regres-
sion was estimated by permutation tests (ROI—the entire
brain). The permutation P value for the negative correla-
tion between age and Jacobian map is 0.0592. This value
indicates the significance level of the trend, that growth
rate is slowing down as age increases.

Growth Maps Recovered From Linear Regression

Finally, the mean growth maps at different ages were
recovered by plotting the linear model with fitted correla-

tion coefficients (Fig. 7). The top row demonstrates the age
effect in growth pattern changes, with strong white matter
growth from age 7-9 years and less overall expansion at
older ages. The bottom two rows exhibit the gender spe-
cific growth maps at different ages. We detected similar,

I Volume loss

I Expansion

Figure 8.
Partial volume effect. A relatively large computational voxel (out-
lined by the dotted lines) could contain both gray matter (GM)
and white matter (WM). The illustrated voxel holds a large pro-
portion of growing white matter (red) with a small proportion
of shrinking gray matter (blue), the overall signal from this voxel
will be dominated by the white matter growth.
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age-related white matter growth, and an uneven growth
pattern between males and females.

DISCUSSION

TBM is a non-linear image registration tool that meas-
ures brain changes using serial MRI scans. The Jacobian
determinants of the deformation map are used to provide
3D visualization of local tissue growth or atrophy with
improved spatial resolution compared to traditional volu-
metry-based morphometry (VBM). We demonstrate this
advantage in the individual study (Fig. 3). Visual inspec-
tion suggests a localized white matter growth in the
orbito-frontal area. The overall increase in frontal white
matter volume is 1%, as calculated by integrating the Jaco-
bian determinants over the region-of-interest. This result is
comparable to the large scale longitudinal MRI study
[Giedd et al., 1999]. Thus, TBM offers equivalent informa-
tion to VBM with superior spatial details, making it a
favorable method for studying age and disease-related
changes in brain morphometry.

Our results from the permutation tests confirm previous
developmental MRI studies that have provided evidence
for age-related increases in total white matter volume and
decreases in total gray matter volume [Caviness et al.,
1996; Giedd et al., 1996; Jernigan et al., 1991; Pfefferbaum
et al.,, 1994; Reiss et al., 1996; Sowell et al., 1999a]. More-
over, we provide detailed spatial mapping of the develop-
ing brain by utilizing the Jacobian matrix field to encode
local volume changes. We have attained high resolution
3D mapping of white matter growth and growth dynam-
ics. The frontiers of the tissue growth correspond well
with the anatomical boundaries of brain structures such as
cerebral white matter, indicating the sensitivity and speci-
ficity of our mapping approach. Global enlargement of
white matter is observed across all lobes indicating an
overall growth of white matter tract system in the subjects.
Every brain was edited carefully by trained raters to
include only brain tissues. Nevertheless, there could still
be a small amount of registration errors at the edge of the
brain due to imperfect segmentation and/or registration.
As a result, the brain masks (ROI) used in this study do
not include boundary voxels. Therefore, the results of per-
mutation tests provide accurate estimate of the overall sig-
nificance levels within each region-of-interest.

Postmortem studies have revealed an extended myelina-
tion process that continues into the third decade of life,
especially for frontal and parietal regions [Yakovlev and
Lecours, 1967]. Several recent findings also suggest an
accelerated maturation of gray and white matter in frontal
lobe during adolescence [Giedd et al., 1999; Sowell et al.,
1999b]. In this study, we demonstrate a wide-spread
growth in white matter, with the most prominent expan-
sion in the frontal lobe. Inference on white matter growth
using TBM, however, is based on changes in tissue boun-
daries or gray/white contrast, which are related to the

underlying tissue microstructure. Nevertheless, it does not
offer a direct measurement of the true changes to white
matter integrity or myelination. MR spectroscopy [Lopez-
Villegas et al., 1996] and quantitative MR relaxometry
[House et al., 2006] might provide a better answer to
address these questions.

The individual growth map shown in Figure 3 demon-
strates cortical gray matter tissue growth over the primary
sensorimotor areas. The same growth pattern is revealed
again in the group average map (Fig. 5). However, other
studies has shown gray matter loss in dorsal parietal and
primary sensorimotor regions at this age range [Gogtay
et al.,, 2004; Sowell et al., 2003]. This seemingly discrepant
result might be explained by the partial volume effect. At
the resolution of FFT 64, the size of each computational
voxel is about 30 mm® (199 mm/64 = 3.1 mm). This is a
relatively large size that might contain both gray and
white matter within the same voxel, especially for the
areas where the gray matter is thin. As illustrated in Fig-
ure 8, if the voxel holds a large proportion of growing
white matter with a small proportion of shrinking gray
matter, the overall signal from that voxel will be domi-
nated by the white matter growth.

Our study is based on 13 developing children with two
consecutive brain scans taken as they matured in age. The
data set is relatively small compared to the few medium-
to-large scale neuro-imaging studies published to date
[Giedd et al., 1999; Paus et al.,, 1999; Sowell et al., 2004].
The warp diagram (Fig. 4) is implemented to compensate
for this relatively low degree of freedom and large var-
iance among individual brains. The step of inter-subject
registration is computationally intensive but it matches the
local shape properties among the subjects. This enables re-
gional comparisons and voxel-wise statistical analyses of
the growth maps. A larger sample size would further
improve the power, and it is necessary to track the gender
specific patterns in brain development.

In this study, we map the patterns of normal brain de-
velopment using TBM. TBM is a highly automated image
analysis technique that delineates local tissue gain or loss
at a greater spatial resolution than the traditionally used
volumetry-based method. In addition to brain develop-
ment, TBM has a wide spectrum of applications in longitu-
dinal brain analysis, such as understanding how brain is
affected by certain psychiatric disorders (e.g. autism, schiz-
ophrenia, depression, etc), tracking degenerative disease
progression, and monitoring drug treatment effect. In
future work, we look to apply TBM to a study with rela-
tively large sample size and expand the statistical models
to answer interesting questions like brain asymmetry, cor-
relations with IQ, cognitive measures, as well as genome

types.
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APPENDIX: JACOBIAN MAPS

Detailed spatial and temporal mapping of brain struc-
tural changes is crucial to understanding the basis of
age-related cognitive advancement and various brain dis-
orders. TBM is an image analysis method based on non-
linear registration. It identifies regional structural differen-
ces by examining the gradients of the deformation field. In
general, it can be applied to detect any structural changes
over time, such as during brain development and disease
progression. It can also be used to map anatomical differ-

ences between different patient groups using cross-sec-
tional data.

We explain here the application of TBM in the context
of studying longitudinal brain changes. For each individ-
ual, serial MRI scans are acquired and TBM is applied to
generate an individual Jacobian growth map, showing 3D
profiles of tissue change over time. To formulate the pro-
cess mathematically, we denote the follow-up scan as the
source (S) and the baseline scan as the target (T). We com-
pute a non-linear displacement vector field u = (u,, u,, u.)
by deforming S to T using a mutual information (MI)
based, inverse consistent mapping algorithm [Leow et al.,
2005a]. Let » = (x, y, z) denotes the voxel location. At satis-
factory registration, S(+ — u) should correspond to T(r) as
their mutual information reaches maximum. The gradient
of the deformation field, also called the Jacobian matrix
field, is then used to quantify local changes. A 3D Jacobian
deformation field is defined by:

Ax—ux)  Oy—uy)  I(z—us)
Ox Ox Ox

] — Ox—uy)  Oy—uy)  I(z—uy)
dy dy dy

Aax—iy)  Oy—wy)  I(z—uz)
0z 0z 0z

The determinant of the Jacobian matrix is derived from
the forward deformation field. It is usually color coded to
show regions of volume expansion det J(r) > 1 or tissue
shrinkage det J(r) < 1 [Ashburner and Friston, 2003;
Chung et al., 2001; Freeborough and Fox, 1998; Riddle
et al., 2004; Thompson et al., 2000; Toga, 1999]. Once indi-
vidual Jacobian maps have been created and spatially
aligned to a standard coordinate system, statistical para-
metric maps are typically established to investigate various
scientific questions such as localization of group difference,
age and gender effect, correlation with disease severity, or
complex interaction between effects of interest [Ashburner
and Friston, 2003].

* 219 o



